Syllabus for sessions Day 1 Hours 2, 3, 4; Day 2 Hours 1, 2, 3, 4; Day 5 Hours 1, 2; Day 21 Hours 1, 2.                                  

Day 1 Hour 2: MOLB: Building blocks of proteins and nucleic acids

SLO 1. Summarize the key properties of amino acids (charge, polarity/hydrophobicity, aromatic character, reactivity) and the structure of the peptide bond.

SLO 2. Explain the “Central Dogma” of molecular biology.

SLO 3. Describe the general structure of nucleotides: sugar, phosphate, and base; explain the polarity of DNA and RNA chains.

SLO 4. Describe the structure of the DNA double helix and RNA secondary structure. Explain the forces that stabilize the double helix, in particular the role of water.

SLO 5. Explain how DNA and RNA polymers are synthesized. Explain the pivotal role of phosphotransfer reactions in DNA and RNA biology and in the cellular energy economy.

 

Day 1 Hour 3: MOLB: Transcription and Translation

SLO 1. Explain how cells overcome three major challenges to replicate their genomes.

SLO 2. Explain why different genes need to be expressed at different rates, in different cells, at different times. 

SLO 3. Describe the functions of the three mammalian RNA polymerases.

SLO 4. Explain the structure of a mammalian gene, including regulatory and coding elements.

SLO 5. Describe how RNA polymerases are directed to gene promoters and the roles of general transcription factors.

SLO 6. Explain how transcription factors control which proteins are made in different cell types.

SLO 7. Outline the processing reactions that precede export of a mRNA transcript from nucleus to cytoplasm.

SLO 8. Outline the major steps of protein synthesis including the roles of mRNA, tRNA, tRNA synthetases and ribosomes.

SLO 9. Describe the basic ways in which microRNA (miRNA) molecules control gene expression.

 

Day 1 Hour 4: MOLB: Protein Targeting, Vesicular Transport

SLO 2. Understand the difference between targeting of integral membrane proteins and secretory proteins. SLO 3. Outline how proteins are folded and modified in the endoplasmic reticulum and Golgi organelles.

SLO 3. Outline how proteins are folded and modified in the endoplasmic reticulum and Golgi organelles.

SLO 4. Explain how proteins and lipids are packaged into carrier vesicles, and how carrier vesicles fuse with target membranes including the plasma membrane.

SLO 5. Explain key mechanisms that underlie endocytosis, receptor recycling, and traffic to the lysosome.

SLO 6. Outline the synaptic vesicle cycle, and explain how clostridial neurotoxins selectively block neurotransmission.

 

Day 2 Hour 1: BIOCHM: Protein Structure and Function

SLO 1. Know the elements of protein secondary, tertiary, and quaternary structure.

SLO 2. Explain the roles of hydrophilic vs. hydrophobic aminoacyl residues in protein folding.

SLO 3. Explain the importance of correct protein folding, chaperone proteins, and how misfolding can lead to pathology.

SLO 4. Understand common post-translational modifications of proteins (phosphorylation; disulfide bond formation; glycosylation) and know why specific modifications occur predominantly on proteins within the cytoplasm or in extracytoplasmic environments.

SLO 5. Know that different proteins are targeted to specific locations inside and outside of cells.

 

Day 2 Hour 2: BIOCHM: Hemoglobin disorders

SLO 1. Explain the diversity of proteinprotein and proteinligand interactions.

SLO 2. Understand how the quaternary structure of hemoglobin and explain the function of the heme prosthetic group.

SLO 3. For a general ligand-receptor pair, be able to explain and calculate the relationship between kon, koff, and KD.

SLO 4. Describe the mechanistic bases of hemoglobinopathies.

SLO 5. Explain the key properties of enzymes. Explain why many enzymes contain bound prosthetic groups.

SLO 6. Explain and calculate the relationships between kcat, Km, and Vmax and Michaelis-Menten enzyme kinetics.

 

Day 2 Hour 4: GENET: Epigenetics

SLO 1. Understand the fundamentals of chromatin structure and remodeling.

SLO 2. Describe the mechanisms by which covalent histone modifications and DNA methylation result in epigenetic regulation of gene expression

SLO3. Demonstrate how epigenetic modifications result in imprinting and distinguish how imprinting leads to Prader-Willi or Angelman syndromes.

SLO4. Illustrate how non-coding RNAs and covalent epigenetic modifications cooperatively regulate mammalian X-inactivation

 

Day 5 Hour 1: MOLB: Sickle Cell Disorder Mutations, Lab Techniques, Integration

SLO 1. Correlate gene mutations with effects on protein expression, structure and function.

SLO 2 Explain how different techniques are used to detect different types of biological molecules including northern, western and Southern blotting, ELISA, PCR, Sanger sequencing, RNAseq, (FACS) cell sorting and HPLC.

SLO 3. Know the common mutations that give rise to sickle cell disease (C and S) and interpret these from fetal (F) and adult (A) hemoglobin on diagnostic tests for both carrier and disease states.

 

Day 5 Hour 2: MOLB: Cystic Fibrosis and Mutation-Specific Therapies

SLO 1. Explain the molecular and cellular basis of cystic fibrosis.

SLO 2. Explain how a single mutation can cause different manifestations in a variety of tissues.

SLO 3. Explain how CF treatments can ameliorate symptoms and predict difficulties implementing them effectively in patients.

SLO 4. Describe the advantages and limitations of mutation-specific molecular therapies

 

Day 21 Hour 1: DNA Replication and Repair

SLO 1. Illustrate DNA replication and identify proteins that are targets for inhibiting DNA replication.

SLO 2. Explain why telomere replication presents special problems and the disorders that could develop if defective, such as dyskeratosis congenita.

SLO 3. Describe the major sources of DNA damage and errors and the pathways used to recognize and correct these errors.

SLO 4. Analyze how defects in different DNA repair pathways lead to specific syndromes, including cancer-predisposition syndromes: Li-Fraumeni syndrome, Lynch syndrome, Xeroderma pigmentosum, Ataxia telangiectasia and hereditary breast and ovarian cancer (HBOC) syndromes.

SLO 5. Describe how DNA repeat expansion relates to the presence and severity of specific disorders: Fragile X syndrome/Fragile X-associated tremor/ataxia syndrome (FXTAS), Huntington disorder, myotonic dystrophy.

SLO 6. Describe how repeated DNA sequences and homologous recombination contribute to the appearance of interstitial deletion syndromes.

 

Day 21 Hour 2: Cell Cycle

SLO1: Summarize the cell cycle and the events that occur in Go, G1, S, M, G2, and M phases.

SLO 2: Describe multiple regulators of the cell cycle, including cyclin, cyclin dependent kinase (CDK), and CDK inhibitors.

SLO 3: Describe the roles of the retinoblastoma protein (Rb) and the transcription factor p53 in cell cycle regulation and the cancers associated with defects in these genes.

Prepared by A.J. Merz, Ph.D. and T. Cherry, M.D., with assistance from Y. Kwon, Ph.D. Autumn, 2020, and Max Kullberg, Ph.D. and Pamela Langer, Ph.D. 2023

License

Molecular Biology Copyright © by Alexey Merz; Timothy Cherry; and kullberm. All Rights Reserved.

Share This Book