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This is a primer on v ector f ields and k ey dif ferential oper ators tha t 

are useful in f luid me chanics.  It is curr entl y under de velopmen t f or 

Ocean 285 Physics Across Oceanography, offered at the Univ ersi ty of 

Washington. 
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PART I 

VECTOR FIELD 
DIFFERENTIAL CALCULUS 
PRIMER 

Vector Field Dif ferential Calculus
Primer   |  3





1. Coordinates 

To mathema tic ally describe v ariables in the oc ean, we need thr ee 

dimensions o f space and one dimension in time.  Wi th mor e than 

one spatial dimension, posi tion be comes a vector o f distanc es along 

each dimension fr om some orig in (0,0,0). 

Often (and almost al ways in this class ) it is convenien t to use a 

local Cartesian coor dinate system f or a plane tangen t to the Ear thÕs 

surfac e.  We wri te: 

    

Key Takeaways 

x incr eases to the East along the loc al horiz ontal plane, in 

the dir ection o f incr easing long itude 

y incr eases to the Nor th along the loc al horiz ontal plane, 

in the dir ection o f incr easing lati tude 

z incr eases upward in the loc al vertic al dir ection 

z = 0 is at the surfac e of the oc ean (to be pr ecise: wher e 

the oc ean surfac e would be if ther e were no motion, i.e., 

the surfac e of a resting oc ean in equilibrium wi th Ear thÕs 

gravity aka geopoten tial  f ield). 
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The local Cartesian coor dinates for a point on the surf ace of the Earth at the 
blue dot. 

Note 1:  The absolute orien tation o f this standar d local Cartesian 

coor dinate system changes depending on wher e you are on the 

Earth (i.e., the dir ection o f ÒUpÓ differs if seen fr om outer spac e). 

Note 2: Sometimes, especiall y for c oastal or estuarine pr oblems, a 

dif ferent loc al Cartesian coor dinate system is use d.  For example, x 

mig ht poin t along the c oastline, wi th y poin ting o ffshor e. 
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FYI:  Lati tude  and long itude  come fr om a spheric al 

coor dinate system. Long itude  is the ang le 

counter clockwise looking do wn on the nor th pole 

relativ e to 0¡ passing thr ough Greenwich, Eng land. 

 Lati tude is the ang le counter clockwise looking a t the 

Earth fr om above the equator ( 0¡ c orr esponds to the 

equator ). Elevation ( formall y: distanc e from the c enter o f 

the Ear th ) is the thir d coor dinate in this system. 

 

Media Attributions 

¥ Cartesian Coor dinates adapted by Susan Hautala © CC BY-SA 

(At tribution Shar eAlike) 
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2. Variables 

A field  in ph ysics is a func tion tha t has a value at every poin t in 

space and time. One e xample is the gr avitational f ield o f the Ear th. 

 All of the v ariables w e will use in this class ar e fields. 

Using our c onvenien t loc al Cartesian coor dinate system, a scalar

f ield has onl y a magnitude.  Its value is a single number a t any poin t 

in space, and time. 

Examples 

Some scalar f ields in oc eanography (scalar func tions o f 

the c oor dinates): 

¥ Salinity, wri t ten ma thema tic ally as S(x,y,z,t) 

¥ Pressure, P(x,y,z,t) 

¥ Concentr ation o f a dissolved substanc e, C(x,y,z,t) 

A vector f ield has a thr ee-dimensional v ector a t every poin t in spac e 

and time.   Imagine space fille d wi th small arr ows wi th a dir ection 

and magni tude (length ) that vary wi th spatial loc ation, and also 

change in time. 

Examples 
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Some vector f ields in oc eanography (these will be def ined 

later ): 

¥ The f luid v elocit y, wri t ten as u(x,y,z,t) has 

componen ts (u, v, w) in each coor dinate dir ection 

¥ The f lux o f substanc e C, wri t ten as FC(x,y,z,t) 

¥ The pr essure gradient f orce, wri t ten as FP(x,y,z,t) 

Key Takeaways 

LetÕs define f lux and tr anspor t. These are two impor tant 

general kinds o f vector f ields in oc eanography. WeÕll have 

mor e to say about these la ter . 

¥ The f lux  of a proper ty is the r ate at which tha t 

proper ty passes through some surfac e, per uni t ar ea 

of the surfac e. 

¥ The tr ansport  of a proper ty is its f lux times the 

area of the surfac e. 

Uni t v ector s have length = 1.  You can create a uni t vector in an y 

dir ection b y dividing the v ector b y its magni tude.  In physics, this 

means that you have divide d out the uni ts and so the v ector 

is dimensionless. 
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Special symbols ar e often g iven to uni t vectors in the 

dir ections o f the c oor dinate system ax es.  In our ( x,y,z) = 

(Eastward, Nor th ward, Upward) coor dinate system: 

Review Material  (hopefull y these are blasts fr om your past ): 

¥ While a scalar has onl y a magnitude, a vector has both 

magni tude and dir ection. 

¥ Vertic al bars surr ounding a v ector indic ate i ts magni tude. 

¥ To calculate the magni tude o f a vector: sum up the squar es of 

the c omponen ts, then tak e the squar e root o f the total. 

 Mathema tic ally: 
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3. The Dot Product 

The f irst v ector oper ator w e will def ine is the dot pr oduct.  For t wo 

vectors , and : 

    

Geometric ally the dot pr oduc t g ives the magni tude o f the 

componen t o f  that is aligne d wi th , multiplie d by the magni tude 

of . 

¥ If t wo vectors ar e perpendicular to one another , then the dot 

produc t is zero. 

¥ If t wo vectors ar e parallel, then the dot pr oduc t is  times . 

Examples 

The dot pr oduc t o f the f luid v elocit y and one o f the 

Cartesian c oor dinate uni t vectors g ives the curr ent 

componen t in tha t dir ection.  For example, le tÕs suppose 

that the curr ent is 2.88 ms-1 to the nor th west and up welling 

at 0 .01 cm s-1 

    

    

gives the nor th ward componen t o f the f luid v elocit y. 

 

Ther e is another impor tant vector oper ator c alled the cr oss 

produc t, but w e will def ine tha t a bi t later . 
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4. Partial Derivatives 

For a func tion o f one independent variable, say x, the deriv ativ e gives 

inf orma tion about ho w the func tion, say , changes when x 

changes.  This is the me aning o f the f irst deriv ativ e. 

    

In other w ords, if you make a small but f ini te change , you get 

a change in the v alue of the func tion .  The deriv ativ e is the r atio 

of these t wo changes, taken in the limi t when the changes be come 

very small.  A geometric al interpr etation is tha t the deriv ativ e is the 

slope of a tangen t line.  The deriv ativ e can also be a function o f x 

(i.e., in the pic tur e below, the slope o f the tangen t line will change as 

you mo ve in x). 

When we have something tha t is a func tion o f mul tip le independen t 

variables (lik e x, y, z and t), we define an equivalent oper ation tha t 

tells us ho w the func tion changes when just one o f the independen t 

variables changes and all the others ar e kept c onstan t.  This is called 
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the partial derivative .  It is wri t ten wi th a special symbol Ò Ó instead 

of the ÒdÓ. 

The par tial deriv ativ e of f wi th r espect to x is wri t ten 

    

and has the me aning o f a change in f divide d by a 

change in x calculated while holding all the other 

independen t variables constan t. 

Key Takeaways 

In f luid me chanics, w e often wri te the oper ation o f taking 

the deriv ativ e in each of the spa tial dimensions as a v ector 

oper ator: 

    

While this ma y seem a bit abstr act, the ne xt t wo sections 

will be about t wo applic ations o f this v ector oper ator , in 

order to c alculate the gradient  and the diver gence. These 

quanti ties will be fundamen tal to wha t w e do in the r est of 

the c ourse. 

 

14  |  Partial Deriv ativ es



If you want mor e material to help y ou understand par tial 

deriv ativ es, tr y this YouTube video: 

A YouTube element has been excluded from this ver sion of the 

text. You can view it online her e: https:/ / uw.pressbooks.pub/

ocean285/?p= 105 

 

Media Attributions 

¥ Deriv ativ eTangent  by jacj adapted by Susan Hautala © CC BY-

SA (At tribution Shar eAlike) 
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5. The Gradient 

The gr adien t  is a vector wi th a magni tude tha t quan tif ies the total 

amoun t o f change o f a field per uni t change in distanc e.  It poin ts 

along the dir ection o f the maximum change. The gr adient is onl y 

def ined for a scalar f ield.  The oper ation o f taking the gr adient o f a 

scalar pr oduc es a vector. 

The easiest way to visualiz e this is wi th a t wo-dimensional 

gradient o f concentr ation ( a scalar) in a horiz ontal plane as in the 

f igur e below.  In this f igur e, higher c oncentr ations ar e shaded mor e 

darkly and the blue arr ows show the c oncentr ation gr adient vector 

f ield. 

Key Takeaways 

The mathema tic al def ini tion o f the gr adient o f the sc alar 

f ield C (in our thr ee standar d spatial dimensions ) is: 
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wher e we have used the par tial deriv ativ e operator 

def ined in the pr evious chapter . 

 

For a highly visual discussion o f par tial deriv ativ es and the 

gradient, see this YouTube video: 

A YouTube element has been excluded from this ver sion of the 

text. You can view it online her e: https:/ / uw.pressbooks.pub/

ocean285/?p= 132 
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Media Attributions 

¥ Gradient  © CC BY-SA (At tribution Shar eAlike) 
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6. The Divergence 

The div ergence of a vector is the sum o f the par tial deriv ativ es of i ts 

componen ts wi th r espect to their individual c oor dinates. 

Key Takeaways 

The div ergence of a vector , wri t ten in terms o f i ts 

componen ts in our usual c oor dinate dir ections  

  is def ined as: 

    

You can get an in tui tiv e feel for the div ergence by sketching v ectors 

in space and thinking about ho w these vectors ar e tending to 

str etch out or squash the distanc e between. 

Examples 

Here are some examples of vector f ields, and the sign o f 

their div ergence in a horiz ontal plane: 
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We will be c onsidering v ectors tha t r epresent f luid v elocit y and 

the f lux  of some pr oper ty lik e salini ty, or oxygen, in the oc ean.  It 

is impor tant to note tha t in the f irst c ase, where the vector f ield 

is velocit y, the div ergence of an Òincompr essibleÓ fluid in thr ee-

dimensional spac e is zero because material elemen ts of water 

cannot be str etche d or squashed. 

Key Takeaways 

The div ergence of the v elocit y f ield in an inc ompr essible 

f luid is z ero: 
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Media Attributions 

¥ Divergence2D by Susan Hautala © CC BY-SA (At tribution 

ShareAlike) 
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7. The Divergence Theorem 

The div ergence theorem is an equali ty tha t can be proven for any 

vector f ield.  All of our c onservation e quations and lar ge-scale 

budgets tha t ar e so useful in oc eanography are based on this 

mathema tic al principle. The div ergence theorem can be abstr acted 

to any vector f ield, but is most e asily understood b y thinking about 

the c oncr ete example wher e the vector f ield is the f lux  of some 

proper ty in the oc ean. 

The div ergence theorem relates the f lux out ward thr ough the 

surr ounding surfac e of a closed volume to the total div ergence 

inside. Consider the f igur e below showing v ector f ield  and the 

surfac e of a sphere. 
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This the orem is usuall y stated mathema tic ally using surfac e and 

volume in tegr als, but tha t is beyond the le vel of calculus expected 

for this class.  Instead, we will appr oach i t by imagining tha t the 

surfac e of the spher e is divide d up in to a very large number o f 

surfac e elements. 

The i -th surfac e area element: 

¥ has surface area . 

¥ is associated wi th a loc al value of the v ector f ield 

¥ has a unit normal vector   that is dir ected out ward and 

perpendicular to this surfac e element 

¥ has an out ward f lux passing thr ough the surfac e 

The total out ward tr anspor t (f lux times ar ea) passing 

thr ough the surfac e of the spher e = 

Next, w e apply a similar ide a to the v olume inside the spher e, 

dividing i t up in to a very large number o f volume elemen ts. 

The j-th in terior v olume elemen t: 

¥ has volume 

¥ is associated wi th a loc al vector 

¥ is associated wi th a loc al divergence of tha t vector f ield 

The total div ergence inside the spher e = 
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Key Takeaways 

The div ergence theorem sets the ne t tr anspor t out ward 

across the surfac e of a closed volume (e.g., the sphere in 

the f igur e above) equal to the total div ergence inside the 

sphere. 

    

Practic ally, if ther e is a net out ward tr anspor t o f a proper ty across 

some volume, ther e must be a sour ce of tha t pr oper ty inside the 

volume (in or der f or ther e to be a posi tiv e total div ergence). 

Wi th this f ormal basis, w e can relate measurements of f luxes 

across the sides of some ÒboxÓ in the ocean to wha t happens inside, 

on average, and ther eby develop budge ts for various pr oper ties 

of in ter est.  As an example, imag ine taking f lux me asurements in 

Admir alty Inlet (thr ough which most o f the w ater passes in to or 

out o f Puget Sound), in the f orm o f a vertic al cross-section tha t 

reaches from the oc ean surfac e to the bot tom and tha t cr osses from 

one side of the passage to the other .  By measuring the total f lux 

of oxygen across this surfac e, we can inf er the ne t pr oduc tion ( or 

uptak e from the a tmospher e) of oxygen in Puget Sound.  If ther e 

is mor e oxygen leaving wi th the surfac e outf low than en tering in 

the de ep inf low, we know tha t oxygen is being adde d to the w ater 

inside. 

We can also take our budge t principles do wn to v ery small (aka 

Òinfini tesimalÓ volumes) and develop dif ferential f orms o f the budge t 

equations. 
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For a highly visual discussion o f div ergence and the div ergence 

theorem, see the f irst half o f this YouTube video: 

A YouTube element has been excluded from this ver sion of the 

text. You can view it online her e: https:/ / uw.pressbooks.pub/

ocean285/?p= 163 

Media Attributions 

¥ DivergenceTheorem by Glosser.ca © Public Domain 
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8. The Curl, and Vorticity 

The thir d of our impor tant par tial dif ferential oper ations is taking 

the cur l of a vector f ield.  This pr oduc es another v ector . 

Key Takeaways 

The cur l of the v ector f ield  is 

def ined as: 

   

We are only going to be c oncerned wi th the cur l of a two-

dimensional v ector f ield in the horiz ontal plane in this class.  One 

impor tant example is the cur l of the horiz ontal velocit y which is the 

def ini tion o f vortici ty , commonl y wri t ten as  or  (we will use ). 

 Since the z-c omponen t is zero in this c ase, we see that the v or tici ty 

only has a vertic al componen t. 

    

Physically, the vor tici ty is a metric o f the loc al spinning motion o f 

a fluid, in this c ase around the v ertic al axis.  The sign o f the v or tici ty 

relativ e to ÒUpÓ follo ws the rig ht-hand rule: if y ou wr ap your f ingers 

in the dir ection o f the cir culation o f the v ectors in the horiz ontal 

26  |  The Cur l, and Vor tici ty

https://en.m.wikipedia.org/wiki/Vorticity


plane, your thumb will poin t in the dir ection o f the cur l vector in the 

vertic al plane. 
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As an example, imag ine the N or th Pacif ic subtr opic al gyre, a 

clockwise cir culation.     To cur l your f ingers in a clockwise manner 

(in the horiz ontal plane ) with y our rig ht hand, y our thumb must 

poin t do wnward.  Thus the lar ge-scale cur l of velocit y for the 

subtr opic al gyre is negativ e. 

Ther e is a fundamen tal the orem for cur l tha t is analogous to 

the Div ergence Theorem tha t you will le arn about if y ou tak e 

Multiv ariate Calculus.   It is called the Cir culation The orem.  But w e 

wonÕt go there in this class. 

For a highly visual discussion o f cur l see the second half o f this 

YouTube video (you watche d the f irst half in the last chapter ): 

A YouTube element has been excluded from this ver sion of the 

text. You can view it online her e: https:/ / uw.pressbooks.pub/

ocean285/?p= 195 
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Media Attributions 

¥ Cur l2D © CC BY-SA (At tribution Shar eAlike) 

¥ Cur lVector  © Public Domain 
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9. Estimating Derivatives 
from Data 

If we want to use these ide as in real wor ld pr oblems, we probably 

need to be able to estima te par tial deriv ativ es using data. 

Here is some pretend da ta Ð for c oncr etenessÕ sake letÕs say tha t 

the y-axis is pr essure (perhaps fr om fr om sea-surfac e height 

measured by a satellite altime ter ). For example, i t mig ht be the 

pressure as a function o f distanc e to the e ast (x) holding depth ( the 

z- coor dinate) and lati tude ( the y- coor dinate) fixed. 

p(x) at z = -50 m and y = 2 4¡N 

We want to use our me asurements of pr essure at discr ete values 

of long itude ( xi) to estima te the f irst- and se cond- par tial 

deriv ativ es of pr essure wi th x.  For example, w e could use the f irst 

par tial deriv ativ e to estima te the pr essure gradient at, say, x2.  As 

another e xample, when w e work pr oblems in volving dif fusion, w e 

mig ht need to estima te the se cond par tial deriv ativ es. 
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An inter active or media element has been excluded 

fr om this ver sion of the text. You can view it online 

here: 

https:/ / uw.pressbooks.pub/ocean285 /?p=219 

9.1 Estimating the first partial derivative 

In the example above, the f irst par tial deriv ativ e at x2 is 

approximated by the change in p divide d by the change in x (i.e., the 

ÒriseÓ over the Òrun Ó to get the appr oximate slope o f the tangen t line 

at x2. 

Key Takeaways 

This is called a f ini te dif ference approximation  to the 

par tial deriv ativ e of pr essure wi th r espect to x: 
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Why did w e use poin ts 1 and 3?  If we used either 

poin ts 1 and 2, then the r esulting tangen t line w ould 

have a slope that is mor e appropria te to a poin t tha t lies 

between poin ts 1 and 2.  Since we want the tangen t line 

slope at x2, we choose to tak e a difference using poin ts 

that ar e center ed on poin t 2.  Not surprising ly, this is 

called using a center ed dif ference approximation.  Had 

we used poin ts 1 and 2 to calculate our  values, then 

we would have used a backward dif ference 

approximation (be cause we used inf orma tion f or values 

lower than, or behind, x2).  Had we used poin ts 2 and 3, 

we would have used a forward dif ference 

approximation. 

9.2 Estimating the second partial derivative 

The second deriv ativ e (or the deriv ativ e of the f irst deriv ativ e) gives 

you the r ate of change o f the slope o f the tangen t line wi th x.  As 

an example, if the se cond deriv ativ e is zero, then the slope does 

not change wi th x, and the cur ve must be a str aight line.  For this 

reason, the second deriv ativ e is also associated wi th the curvatur e 

of a func tion.  Positiv e second deriv ativ es indic ate a tangen t line 

slope tha t incr eases with x.  Negativ e second deriv ativ es indic ate a 

tangen t line slope tha t decreases with x. 
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An inter active or media element has been excluded 

fr om this ver sion of the text. You can view it online 

here: 

https:/ / uw.pressbooks.pub/ocean285 /?p=219 

Key Takeaways 

Below is a center ed f ini te dif ference approximation f or 

the second deriv ativ e at poin t x2 wher e we assume that 

    

Wher e does this f orm ula come fr om?  We want to 

approximate ho w the slope o f a tangen t line changes in 

x.  We use a center ed dif ference first deriv ativ e to 

estima te the tangen t line slope a t poin t half w ay 

between x1 and x2, which is the poin t .  And 

then w e do the same f or poin ts 2 and 3, which g ives an 

estima te f or the poin t .  Then w e take the 

change in these t wo slopes divide d by the change in x

Estimating Deriv ativ es from Data  |  33

https://uw.pressbooks.pub/ocean285/?p=219#pb-interactive-content


(which is also  since the poin ts are at the half -w ay 

marks). 

    

Add some algebr a to turn i t in to the pr evious 

expr ession! 

 

Media Attributions 

¥ PressureVsX by Susan Hautala © CC BY-SA (At tribution 

ShareAlike) 
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PART II 

ADVECTION AND 
DIFFUSION 

This par t is under c onstruc tion, and f or a while will just c onsist o f 

fr agments not e asily available in the c ourse te xtbook. 
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10. The Turbulent Diffusive 
Flux 

We will not go in to the de tails o f the ph ysics of turbulenc e in this 

course.  At this poin t, our main c oncern is tha t turbulenc e is 

associated wi th a much mor e eff icien t Òdif fusion Ó of pr oper ties in a 

f luid c ompar ed to mole cular dif fusion. 

Both lar ger scale f low and the turbulenc e are advectiv e processes. 

The advectiv e f lux is the pr oper ty concentr ation ( C) times the 

velocit y.  Here we are going to just look a t the f lux in the 

x-dir ection. 

    

In the last e xpr ession, we have broken both the c oncentr ation 

and the v elocit y up in to t wo componen ts: a time-me an componen t 

indic ated by an overbar to indic ate tha t oper ation, and a c omponen t 

that can f luc tuate in time about this me an (but tha t has zero mean 

itself ).  Realistic ally, this o verbar mig ht r epresent a half hour 

average Ð thatÕs about the minimum amoun t o f time i t tak es to get a 

good pic tur e of the sta tistics o f the turbulenc e in the oc ean Ð so the 

mean f low is not a trul y a long-term me an, just a lar ger scale f low 

f ield tha t is chang ing mor e slowly than a timesc ale of an hour or so. 

We will no w multipl y out this last e xpr ession 

    

Now we will tak e the time a verage of each of these terms 

    

(1) For the first term, the time a verage of the pr oduc t o f the t wo 

time a verages is redundan t sinc e these are just constan ts in time. 

 Physically this r epresents the ad vectiv e f lux o f the pr oper ty by the 

larger scale f low f ield. 

(2) The second term is iden tic ally zero.  The time-a verage 
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concentr ation is just a number and the f luc tuating par t has zero 

time a verage, so their pr oduc t is zero. 

(3) Similar ly, the thir d term is iden tic ally zero. 

(4) The four th term r epresents a time a veraged corr elation 

between velocit y and pr oper ty f luc tuations.  Physically, this term 

represents the turbulen t tr anspor t o f the pr oper ty. 

Simplif ying: 

    

If we had an instrumen t capable of r esolving the turbulen t 

f luc tuations w e can measure the turbulen t tr anspor t dir ectl y.  But 

these measurements are typic ally expensive.  So we tr y to model the 

turbulen t tr anspor t in terms o f things w e already know about the 

larger scale f low and pr oper ty f ields. 

One simple and widel y used model o f this pr ocess is to model 

turbulen t tr anspor t using FickÕs Law of dif fusion , but wi th a 

dif fusivi ty tha t is much ( several orders of magni tude in the oc ean) 

larger than the mole cular dif fusivi ty. 

    

We usually dr op the o verbars fr om the time-me an quanti ties 

(since that is wha t w e are typic ally tr ying to model). 

Here is an example (artif icial) time series o f vertic al velocit y (w) 

and temper atur e (T) with z ero mean f low, but an under lying up ward 

turbulen t tr anspor t o f heat. The bot tom lef t panel sho ws the 

individual wÕTÕ pair at the instan t indic ated by the r ed dot in the time 

series on the top r ow.  The value of the time-a veraged turbulen t 

temper atur e tr anspor t is: 

    
To get the possibl y mor e useful quan ti ty of turbulen t heat 

tr anspor t, you would multipl y by f luid densi ty and heat capacity. 
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https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion#Fick's_first_law


A video element has been excluded from this ver sion 

of the text. You can watch it online her e: 

https:/ / uw.pressbooks.pub/ocean285 /?p=295 
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PART III 

STEADY-STATE 
MOMENTUM BALANCE(S) 

This par t is under c onstruc tion, and f or a while will just c onsist o f 

fr agments not e asily available in the c ourse te xtbook. 
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11. Bernoulli Flow 

Bernoulli f low is a term use d to describe a v elocit y f ield tha t to f irst 

order obe ys BernoulliÕs Equation.  The pr essure (P), speed (U) and 

elevation ( z) at t wo poin ts along the same str eamline (we will talk 

mor e about Òstr eamlinesÓ in class) in Bernoulli f low are related by 

this e quation: 

Key Takeaways 

The Bernoulli Equa tion f or t wo poin ts (subscripts 1 and 2) 

along a str eamline in fric tionless, inc ompr essible f low: 

    

LetÕs start wi th a simple c ase Ð the one-dimensional e astward 

componen t equation ( so that U=u) for ste ady (no time-dependenc e) 

and fric tionless f low: 

    

wher e PGF = Pressure Gradient For ce.  In this f orm, if w e 

remember tha t the term on the lef t is equal to the L agrangian 

deriv ativ e for this simple 1D f low, we learn tha t the L agrangian 

acceleration is quan ti tativ ely related to the PGF via N ewton Õs Law 

for .  Althoug h the f low is steady, ther e are spatial 

changes in velocit y (accelerations f ollo wing a w ater par cel) Ð i.e. 
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Lagrangian accelerations f or a mo ving f low.  We are now going to 

change the lef t side via a r everse chain-rule f or dif ferentia tion: 

    

In this f orm, w e can see that the lef t side is telling us about 

the spatial gr adient o f kine tic ener gy ( ) Ð the PGF is 

incr easing (if posi tiv e) or decreasing (if negativ e) the kine tic ener gy 

to the e ast along a str eamline.  For t wo poin ts separated by a 

distanc e , their dif ference in kine tic ener gy  can be 

wri t ten as: 

    

The rig ht side is the f orce times the distanc e, or the ne t w ork 

done on the system b y the PGF which is ne eded to change the 

kine tic ener gy.  Thus BernoulliÕs Equation is r eally a statemen t o f 

conservation o f ener gy in the absenc e of fric tion. 

Now we will w ork on the full e xpr ession for the PGF: 

   

and if w e wri te dif ferences using values at poin t 2 minus poin t 1: 

    

or 

    

which is star ting to look lik e part o f the e quation in the bo x. 

Of course, i t is not ac tuall y possible to ha ve a change of just one 
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componen t o f velocit y in space because of the c ontinui ty equation, 

so this simple e xample has to be modif ied to include a t least one 

mor e componen t o f velocit y.  If one o f those c omponen ts is vertic al, 

then w e have to tak e into account changes in poten tial ener gy (PE 

= gz).  The equation in the bo x is a general form o f the Bernoulli 

Equation ( we will not deriv e it) that is equivalent to: 

    
wher e the KE is now r elated to the total f low speed, (

).  If you want mor e in the w ay of explanation and 

deriv ation o f the term in volving poten tial ener gy, see this Khan 

Academy lesson ÒWhat is BernoulliÕs Equation ?Ó 
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https://www.khanacademy.org/science/physics/fluids/fluid-dynamics/a/what-is-bernoullis-equation




Please contact user: hautala at pr essbooks if you see any pr oblems 

wi th this book. 
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