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This is a primer on vector fields and key differential operators that 

are useful in fluid mechanics.  It is currently under development for 

Ocean 285 Physics Across Oceanography, offered at the University of 

Washington. 
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PART I 

VECTOR FIELD 
DIFFERENTIAL CALCULUS 
PRIMER 
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1. Coordinates 

To mathematically describe variables in the ocean, we need three 

dimensions of space and one dimension in time.  With more than 

one spatial dimension, position becomes a vector of distances along 

each dimension from some origin (0,0,0). 

Often (and almost always in this class) it is convenient to use a 

local Cartesian coordinate system for a plane tangent to the Earth’s 

surface.  We write: 

    

Key Takeaways 

x increases to the East along the local horizontal plane, in 

the direction of increasing longitude 

y increases to the North along the local horizontal plane, 

in the direction of increasing latitude 

z increases upward in the local vertical direction 

z = 0 is at the surface of the ocean (to be precise: where 

the ocean surface would be if there were no motion, i.e., 

the surface of a resting ocean in equilibrium with Earth’s 

gravity aka geopotential field). 
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The local Cartesian coordinates for a point on the surface of the Earth at the 
blue dot. 

Note 1:  The absolute orientation of this standard local Cartesian 

coordinate system changes depending on where you are on the 

Earth (i.e., the direction of “Up” differs if seen from outer space). 

Note 2: Sometimes, especially for coastal or estuarine problems, a 

different local Cartesian coordinate system is used.  For example, x 

might point along the coastline, with y pointing offshore. 

6  |  Coordinates



FYI:  Latitude and longitude come from a spherical 

coordinate system. Longitude is the angle 

counterclockwise looking down on the north pole 

relative to 0° passing through Greenwich, England. 

 Latitude is the angle counterclockwise looking at the 

Earth from above the equator (0° corresponds to the 

equator). Elevation (formally: distance from the center of 

the Earth) is the third coordinate in this system. 

 

Media Attributions 

• Cartesian Coordinates adapted by Susan Hautala © CC BY-SA 

(Attribution ShareAlike) 
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2. Variables 

A field in physics is a function that has a value at every point in 

space and time. One example is the gravitational field of the Earth. 

 All of the variables we will use in this class are fields. 

Using our convenient local Cartesian coordinate system, a scalar
field has only a magnitude. Its value is a single number at any point 

in space, and time. 

Examples 

Some scalar fields in oceanography (scalar functions of 

the coordinates): 

• Salinity, written mathematically as S(x,y,z,t) 

• Pressure, P(x,y,z,t) 

• Concentration of a dissolved substance, C(x,y,z,t) 

A vector field has a three-dimensional vector at every point in space 

and time.  Imagine space filled with small arrows with a direction 

and magnitude (length) that vary with spatial location, and also 

change in time. 

Examples 
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Some vector fields in oceanography (these will be defined 

later): 

• The fluid velocity, written as u(x,y,z,t) has 

components (u, v, w) in each coordinate direction 

• The flux of substance C, written as FC(x,y,z,t) 

• The pressure gradient force, written as FP(x,y,z,t) 

Key Takeaways 

Let’s define flux and transport. These are two important 

general kinds of vector fields in oceanography. We’ll have 

more to say about these later. 

• The flux of a property is the rate at which that 

property passes through some surface, per unit area 

of the surface. 

• The transport of a property is its flux times the 

area of the surface. 

Unit vectors have length = 1.  You can create a unit vector in any 

direction by dividing the vector by its magnitude.  In physics, this 

means that you have divided out the units and so the vector 

is dimensionless. 
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Special symbols are often given to unit vectors in the 

directions of the coordinate system axes.  In our (x,y,z) = 

(Eastward, Northward, Upward) coordinate system: 

Review Material (hopefully these are blasts from your past): 

• While a scalar has only a magnitude, a vector has both 

magnitude and direction. 

• Vertical bars surrounding a vector indicate its magnitude. 

• To calculate the magnitude of a vector: sum up the squares of 

the components, then take the square root of the total. 

 Mathematically: 
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3. The Dot Product 

The first vector operator we will define is the dot product.  For two 

vectors , and : 

    
Geometrically the dot product gives the magnitude of the 

component of  that is aligned with , multiplied by the magnitude 

of . 

• If two vectors are perpendicular to one another, then the dot 

product is zero. 

• If two vectors are parallel, then the dot product is  times . 

Examples 

The dot product of the fluid velocity and one of the 

Cartesian coordinate unit vectors gives the current 

component in that direction.  For example, let’s suppose 

that the current is 2.88 ms-1 to the northwest and upwelling 

at 0.01 cm s-1 

    

    

gives the northward component of the fluid velocity. 

 

There is another important vector operator called the cross 

product, but we will define that a bit later. 
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4. Partial Derivatives 

For a function of one independent variable, say x, the derivative gives 

information about how the function, say , changes when x 

changes.  This is the meaning of the first derivative. 

    

In other words, if you make a small but finite change , you get 

a change in the value of the function .  The derivative is the ratio 

of these two changes, taken in the limit when the changes become 

very small.  A geometrical interpretation is that the derivative is the 

slope of a tangent line.  The derivative can also be a function of x 

(i.e., in the picture below, the slope of the tangent line will change as 

you move in x). 

When we have something that is a function of multiple independent 

variables (like x, y, z and t), we define an equivalent operation that 

tells us how the function changes when just one of the independent 

variables changes and all the others are kept constant.  This is called 
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the partial derivative.  It is written with a special symbol “ ” instead 

of the “d”. 

The partial derivative of f with respect to x is written 

    

and has the meaning of a change in f divided by a 

change in x calculated while holding all the other 

independent variables constant. 

Key Takeaways 

In fluid mechanics, we often write the operation of taking 

the derivative in each of the spatial dimensions as a vector 

operator: 

    

While this may seem a bit abstract, the next two sections 

will be about two applications of this vector operator, in 

order to calculate the gradient and the divergence. These 

quantities will be fundamental to what we do in the rest of 

the course. 
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If you want more material to help you understand partial 

derivatives, try this YouTube video: 

A YouTube element has been excluded from this version of the 

text. You can view it online here: https://uw.pressbooks.pub/

ocean285/?p=105 

 

Media Attributions 

• DerivativeTangent by jacj adapted by Susan Hautala © CC BY-

SA (Attribution ShareAlike) 
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5. The Gradient 

The gradient is a vector with a magnitude that quantifies the total 

amount of change of a field per unit change in distance.  It points 

along the direction of the maximum change. The gradient is only 

defined for a scalar field.  The operation of taking the gradient of a 

scalar produces a vector. 

The easiest way to visualize this is with a two-dimensional 

gradient of concentration (a scalar) in a horizontal plane as in the 

figure below.  In this figure, higher concentrations are shaded more 

darkly and the blue arrows show the concentration gradient vector 

field. 

Key Takeaways 

The mathematical definition of the gradient of the scalar 

field C (in our three standard spatial dimensions) is: 
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where we have used the partial derivative operator 

defined in the previous chapter. 

 

For a highly visual discussion of partial derivatives and the 

gradient, see this YouTube video: 

A YouTube element has been excluded from this version of the 

text. You can view it online here: https://uw.pressbooks.pub/

ocean285/?p=132 
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Media Attributions 

• Gradient © CC BY-SA (Attribution ShareAlike) 
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6. The Divergence 

The divergence of a vector is the sum of the partial derivatives of its 

components with respect to their individual coordinates. 

Key Takeaways 

The divergence of a vector , written in terms of its 

components in our usual coordinate directions 

  is defined as: 

    

You can get an intuitive feel for the divergence by sketching vectors 

in space and thinking about how these vectors are tending to 

stretch out or squash the distance between. 

Examples 

Here are some examples of vector fields, and the sign of 

their divergence in a horizontal plane: 
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We will be considering vectors that represent fluid velocity and 

the flux of some property like salinity, or oxygen, in the ocean.  It 

is important to note that in the first case, where the vector field 

is velocity, the divergence of an “incompressible” fluid in three-

dimensional space is zero because material elements of water 

cannot be stretched or squashed. 

Key Takeaways 

The divergence of the velocity field in an incompressible 

fluid is zero: 
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Media Attributions 

• Divergence2D by Susan Hautala © CC BY-SA (Attribution 

ShareAlike) 
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7. The Divergence Theorem 

The divergence theorem is an equality that can be proven for any 

vector field.  All of our conservation equations and large-scale 

budgets that are so useful in oceanography are based on this 

mathematical principle. The divergence theorem can be abstracted 

to any vector field, but is most easily understood by thinking about 

the concrete example where the vector field is the flux of some 

property in the ocean. 

The divergence theorem relates the flux outward through the 

surrounding surface of a closed volume to the total divergence 

inside. Consider the figure below showing vector field  and the 

surface of a sphere. 
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This theorem is usually stated mathematically using surface and 

volume integrals, but that is beyond the level of calculus expected 

for this class.  Instead, we will approach it by imagining that the 

surface of the sphere is divided up into a very large number of 

surface elements. 

The i-th surface area element: 

• has surface area . 

• is associated with a local value of the vector field 

• has a unit normal vector  that is directed outward and 

perpendicular to this surface element 

• has an outward flux passing through the surface 

The total outward transport (flux times area) passing 

through the surface of the sphere = 

Next, we apply a similar idea to the volume inside the sphere, 

dividing it up into a very large number of volume elements. 

The j-th interior volume element: 

• has volume 

• is associated with a local vector 

• is associated with a local divergence of that vector field 

The total divergence inside the sphere = 
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Key Takeaways 

The divergence theorem sets the net transport outward 

across the surface of a closed volume (e.g., the sphere in 

the figure above) equal to the total divergence inside the 

sphere. 

    

Practically, if there is a net outward transport of a property across 

some volume, there must be a source of that property inside the 

volume (in order for there to be a positive total divergence). 

With this formal basis, we can relate measurements of fluxes 

across the sides of some “box” in the ocean to what happens inside, 

on average, and thereby develop budgets for various properties 

of interest.  As an example, imagine taking flux measurements in 

Admiralty Inlet (through which most of the water passes into or 

out of Puget Sound), in the form of a vertical cross-section that 

reaches from the ocean surface to the bottom and that crosses from 

one side of the passage to the other.  By measuring the total flux 

of oxygen across this surface, we can infer the net production (or 

uptake from the atmosphere) of oxygen in Puget Sound.  If there 

is more oxygen leaving with the surface outflow than entering in 

the deep inflow, we know that oxygen is being added to the water 

inside. 

We can also take our budget principles down to very small (aka 

“infinitesimal” volumes) and develop differential forms of the budget 

equations. 
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For a highly visual discussion of divergence and the divergence 

theorem, see the first half of this YouTube video: 

A YouTube element has been excluded from this version of the 

text. You can view it online here: https://uw.pressbooks.pub/

ocean285/?p=163 

Media Attributions 

• DivergenceTheorem by Glosser.ca © Public Domain 
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8. The Curl, and Vorticity 

The third of our important partial differential operations is taking 

the curl of a vector field.  This produces another vector. 

Key Takeaways 

The curl of the vector field  is 

defined as: 

   

We are only going to be concerned with the curl of a two-

dimensional vector field in the horizontal plane in this class.  One 

important example is the curl of the horizontal velocity which is the 

definition of vorticity, commonly written as  or  (we will use ). 

 Since the z-component is zero in this case, we see that the vorticity 

only has a vertical component. 

    

Physically, the vorticity is a metric of the local spinning motion of 

a fluid, in this case around the vertical axis.  The sign of the vorticity 

relative to “Up” follows the right-hand rule: if you wrap your fingers 

in the direction of the circulation of the vectors in the horizontal 
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plane, your thumb will point in the direction of the curl vector in the 

vertical plane. 
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As an example, imagine the North Pacific subtropical gyre, a 

clockwise circulation.    To curl your fingers in a clockwise manner 

(in the horizontal plane) with your right hand, your thumb must 

point downward.  Thus the large-scale curl of velocity for the 

subtropical gyre is negative. 

There is a fundamental theorem for curl that is analogous to 

the Divergence Theorem that you will learn about if you take 

Multivariate Calculus.  It is called the Circulation Theorem.  But we 

won’t go there in this class. 

For a highly visual discussion of curl see the second half of this 

YouTube video (you watched the first half in the last chapter): 

A YouTube element has been excluded from this version of the 

text. You can view it online here: https://uw.pressbooks.pub/

ocean285/?p=195 
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Media Attributions 

• Curl2D © CC BY-SA (Attribution ShareAlike) 

• CurlVector © Public Domain 
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9. Estimating Derivatives 
from Data 

If we want to use these ideas in real world problems, we probably 

need to be able to estimate partial derivatives using data. 

Here is some pretend data – for concreteness’ sake let’s say that 

the y-axis is pressure (perhaps from from sea-surface height 

measured by a satellite altimeter). For example, it might be the 

pressure as a function of distance to the east (x) holding depth (the 

z-coordinate) and latitude (the y-coordinate) fixed. 

p(x) at z = -50 m and y = 24°N 

We want to use our measurements of pressure at discrete values 

of longitude (xi) to estimate the first- and second- partial 

derivatives of pressure with x.  For example, we could use the first 

partial derivative to estimate the pressure gradient at, say, x2.  As 

another example, when we work problems involving diffusion, we 

might need to estimate the second partial derivatives. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://uw.pressbooks.pub/ocean285/?p=219 

9.1 Estimating the first partial derivative 

In the example above, the first partial derivative at x2 is 

approximated by the change in p divided by the change in x (i.e., the 

“rise” over the “run” to get the approximate slope of the tangent line 

at x2. 

Key Takeaways 

This is called a finite difference approximation to the 

partial derivative of pressure with respect to x: 

    

Estimating Derivatives from Data  |  31

https://uw.pressbooks.pub/ocean285/?p=219#pb-interactive-content


Why did we use points 1 and 3?  If we used either 

points 1 and 2, then the resulting tangent line would 

have a slope that is more appropriate to a point that lies 

between points 1 and 2.  Since we want the tangent line 

slope at x2, we choose to take a difference using points 

that are centered on point 2.  Not surprisingly, this is 

called using a centered difference approximation.  Had 

we used points 1 and 2 to calculate our  values, then 

we would have used a backward difference 

approximation (because we used information for values 

lower than, or behind, x2).  Had we used points 2 and 3, 

we would have used a forward difference 

approximation. 

9.2 Estimating the second partial derivative 

The second derivative (or the derivative of the first derivative) gives 

you the rate of change of the slope of the tangent line with x.  As 

an example, if the second derivative is zero, then the slope does 

not change with x, and the curve must be a straight line.  For this 

reason, the second derivative is also associated with the curvature 

of a function.  Positive second derivatives indicate a tangent line 

slope that increases with x.  Negative second derivatives indicate a 

tangent line slope that decreases with x. 
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An interactive or media element has been excluded 

from this version of the text. You can view it online 

here: 

https://uw.pressbooks.pub/ocean285/?p=219 

Key Takeaways 

Below is a centered finite difference approximation for 

the second derivative at point x2 where we assume that 

    

Where does this formula come from?  We want to 

approximate how the slope of a tangent line changes in 

x.  We use a centered difference first derivative to 

estimate the tangent line slope at point half way 

between x1 and x2, which is the point .  And 

then we do the same for points 2 and 3, which gives an 

estimate for the point .  Then we take the 

change in these two slopes divided by the change in x
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(which is also  since the points are at the half-way 

marks). 

    

Add some algebra to turn it into the previous 

expression! 

 

Media Attributions 

• PressureVsX by Susan Hautala © CC BY-SA (Attribution 

ShareAlike) 
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PART II 

ADVECTION AND 
DIFFUSION 

This part is under construction, and for a while will just consist of 

fragments not easily available in the course textbook. 
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10. The Turbulent Diffusive 
Flux 

We will not go into the details of the physics of turbulence in this 

course.  At this point, our main concern is that turbulence is 

associated with a much more efficient “diffusion” of properties in a 

fluid compared to molecular diffusion. 

Both larger scale flow and the turbulence are advective processes. 

The advective flux is the property concentration (C) times the 

velocity.  Here we are going to just look at the flux in the 

x-direction. 

    

In the last expression, we have broken both the concentration 

and the velocity up into two components: a time-mean component 

indicated by an overbar to indicate that operation, and a component 

that can fluctuate in time about this mean (but that has zero mean 

itself).  Realistically, this overbar might represent a half hour 

average – that’s about the minimum amount of time it takes to get a 

good picture of the statistics of the turbulence in the ocean – so the 

mean flow is not a truly a long-term mean, just a larger scale flow 

field that is changing more slowly than a timescale of an hour or so. 

We will now multiply out this last expression 

    

Now we will take the time average of each of these terms 

    

(1) For the first term, the time average of the product of the two 

time averages is redundant since these are just constants in time. 

 Physically this represents the advective flux of the property by the 

larger scale flow field. 

(2) The second term is identically zero.  The time-average 
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concentration is just a number and the fluctuating part has zero 

time average, so their product is zero. 

(3) Similarly, the third term is identically zero. 

(4) The fourth term represents a time averaged correlation 

between velocity and property fluctuations.  Physically, this term 

represents the turbulent transport of the property. 

Simplifying: 

    

If we had an instrument capable of resolving the turbulent 

fluctuations we can measure the turbulent transport directly.  But 

these measurements are typically expensive.  So we try to model the 

turbulent transport in terms of things we already know about the 

larger scale flow and property fields. 

One simple and widely used model of this process is to model 

turbulent transport using Fick’s Law of diffusion, but with a 

diffusivity that is much (several orders of magnitude in the ocean) 

larger than the molecular diffusivity. 

    

We usually drop the overbars from the time-mean quantities 

(since that is what we are typically trying to model). 

Here is an example (artificial) time series of vertical velocity (w) 

and temperature (T) with zero mean flow, but an underlying upward 

turbulent transport of heat. The bottom left panel shows the 

individual w’T’ pair at the instant indicated by the red dot in the time 

series on the top row.  The value of the time-averaged turbulent 

temperature transport is: 

    
To get the possibly more useful quantity of turbulent heat 

transport, you would multiply by fluid density and heat capacity. 

 

38  |  The Turbulent Diffusive Flux

https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion#Fick's_first_law


A video element has been excluded from this version 

of the text. You can watch it online here: 

https://uw.pressbooks.pub/ocean285/?p=295 
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PART III 

STEADY-STATE 
MOMENTUM BALANCE(S) 

This part is under construction, and for a while will just consist of 

fragments not easily available in the course textbook. 
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11. Bernoulli Flow 

Bernoulli flow is a term used to describe a velocity field that to first 

order obeys Bernoulli’s Equation.  The pressure (P), speed (U) and 

elevation (z) at two points along the same streamline (we will talk 

more about “streamlines” in class) in Bernoulli flow are related by 

this equation: 

Key Takeaways 

The Bernoulli Equation for two points (subscripts 1 and 2) 

along a streamline in frictionless, incompressible flow: 

    

Let’s start with a simple case – the one-dimensional eastward 

component equation (so that U=u) for steady (no time-dependence) 

and frictionless flow: 

    

where PGF = Pressure Gradient Force.  In this form, if we 

remember that the term on the left is equal to the Lagrangian 

derivative for this simple 1D flow, we learn that the Lagrangian 

acceleration is quantitatively related to the PGF via Newton’s Law 

for .  Although the flow is steady, there are spatial 

changes in velocity (accelerations following a water parcel) – i.e. 
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Lagrangian accelerations for a moving flow.  We are now going to 

change the left side via a reverse chain-rule for differentiation: 

    

In this form, we can see that the left side is telling us about 

the spatial gradient of kinetic energy ( ) – the PGF is 

increasing (if positive) or decreasing (if negative) the kinetic energy 

to the east along a streamline.  For two points separated by a 

distance , their difference in kinetic energy  can be 

written as: 

    

The right side is the force times the distance, or the net work 

done on the system by the PGF which is needed to change the 

kinetic energy.  Thus Bernoulli’s Equation is really a statement of 

conservation of energy in the absence of friction. 

Now we will work on the full expression for the PGF: 

   

and if we write differences using values at point 2 minus point 1: 

    

or 

    

which is starting to look like part of the equation in the box. 

Of course, it is not actually possible to have a change of just one 
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component of velocity in space because of the continuity equation, 

so this simple example has to be modified to include at least one 

more component of velocity.  If one of those components is vertical, 

then we have to take into account changes in potential energy (PE 

= gz).  The equation in the box is a general form of the Bernoulli 

Equation (we will not derive it) that is equivalent to: 

    
where the KE is now related to the total flow speed, (

).  If you want more in the way of explanation and 

derivation of the term involving potential energy, see this Khan 

Academy lesson “What is Bernoulli’s Equation?” 
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Please contact user: hautala at pressbooks if you see any problems 

with this book. 
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