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This is a primer on v ector f ields and key dif ferential oper ators tha t
are useful in f luid me chanics. Itis curr ently under de velopment for
Ocean 285 Physics Across Oceanogmaphy, offered at the Univ ersity of
Washington.
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1 Coodinates

To mathematic ally describe v ariables in the oc ean, we need thr ee
dimensions o f space and one dimension in time. With mor e than
one spatial dimension, posi tion be comes a vector o f distanc es along
each dimension fr om some orig in (0,0,0).

Often (and almost always in this class) it is convenient to use a
local Cartesian coordinate system f or a plane tangen t to the Ear th®
surface. We wri te:

X = (I‘,y, Z)

Key Takeaways

X incr eases to the East along the loc al horiz ontal plane, in
the dir ection o f incr easing long itude

y incr eases to the N orth along the loc al horiz ontal plane,
in the dir ection o f incr easing latitude

zincr eases upward in the loc al vertic al dir ection

z= 0 s at the surfac e of the oc ean (to be pr ecise: wher e

the oc ean surfac e would be if ther e were no motion, i.e.,
the surfac e of a resting oc ean in equilibrium wi th Earth®

gravity aka geopoten tial field).
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https://en.m.wikipedia.org/wiki/Geopotential

The local Cartesian coordinates for a point on the surf ace of the Earth at the
blue dot.

Note 1: The absolute orien tation of this standar d local Cartesian
coordinate system changes depending on wher e you are on the
Earth (i.e., the dir ection o f QU difers if seen fr om outer spac e).

Note 2: Sometimes, especially for coastal or estuarine pr oblems, a
different loc al Cartesian coordinate system is used. For example, x
mig ht poin t along the ¢ oastline, wi th y pointing o ffshor e.
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FYI: Latitude and longitude come fr om a spheric al
coordinate system. Long itude is the angle
counter clockwise looking do wn on the nor th pole

relativ e to 0j passing thr ough Greenwich, Eng land.
Latitude is the ang le counter clockwise looking a t the
Earth fr om above the equator (0j corr esponds to the
equator ). Elevation (formall y: distanc e from the c enter o f
the Earth) is the thir d coordinate in this system.

Media Attributions

¥ Cartesian Coor dinates adapted by Susan Hautala © CC BY-SA
(Attribution Shar eAlike)
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2. Variables

A field in physics is a function that has a value at every point in
space and time. One e xample is the gr avitational f ield of the Ear th.
All of the v ariables w e will use in this class ar e fields.

Using our c onvenient loc al Cartesian coordinate system, a scalar
field has only a magnitude. Its value is a single number at any point
in space, and time.

Examples

Some scalar fields in oc eanography (scalar func tions o f
the coordinates):

¥  Salinity, written mathematic ally as S(x,y,z,t)
¥ Pressure, P,y,z,t)
¥  Concentr ation o f a dissolved substanc e, C(x,y,z,t)

Avector field has a thr ee-dimensional v ector at every pointin space
and time. Imagine space filled with small arr ows with a dir ection
and magnitude (length ) that vary with spatial loc ation, and also
change in time.

Examples
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Some vector f ields in oc eanography (these will be def ined
later):

¥  The fluid velocit y, written as u(x,y,z,t) has
componen ts (u, v, w) in each coor dinate dir ection

¥  The flux of substance C, written as Ec(X,y,z,t)

¥  The pressure gradient force, written as Fp(x,y,z,t)

Key Takeaways

Let® define flux and tr ansport. These are two impor tant
general kinds of vector f ields in oc eanography. WeOll hae
mor e to say about these la ter.

¥  The flux of a property is the r ate at which tha t
property passes through some surfac e, per unit area
of the surfac e.

¥  The tr ansport of a property is its flux times the
area of the surfac e.

Unit vector s have length = 1. You can create a unit vector in any
dir ection by dividing the v ector by its magnitude. In physics, this
means that you have divided out the uni ts and so the vector
is dimensionless.
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Special symbols ar e often given to uni t vectors in the
dir ections o f the c oordinate system axes. In our (Xx,y,z) =
(Eastward, Northward, Upward) coor dinate system:

i = (1,0,0)
j=(0,1,0)
k=1(0,0,1)

Review Material (hopefull y these are blasts from your past):

¥ While a scalar has only a magnitude, a vector has both
magnitude and dir ection.

¥ Vertic al bars surr ounding a v ector indic ate its magnitude.

¥ To calculate the magni tude of a vector: sum up the squar es of
the componen ts, then tak e the squar e root of the total.
Mathematic ally:

] = (w0, w)] = V@ + 02+ w? = (i + 0% 4+ w?)
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3. The Dot Product

The first v ector oper ator w e will def ine is the dot pr oduct. For two
vectors b = (bx, by, bz), and C — (Cm, Cy, CZ):
b-c=b"c"+bVcY + b*c®
Geometric ally the dot pr oduct gives the magnitude of the
component of h that is aligne d with C, multiplie d by the magni tude
of C.

¥ If two vectors ar e perpendicular to one another , then the dot
productis zero.
¥ If two vectors ar e parallel, then the dot pr oductis |b| times |c]|.

Examples

The dot pr oduct of the f luid v elocit y and one of the
Cartesian coordinate unit vectors g ives the curr ent
componen tin tha t dir ection. For example, let® suppose
that the curr ent is 2.88 ms™'to the nor thwest and upwelling
at001cms?

u-j=(-2,2,0.0001)ms™*-(0,1,0)

= —2%x04+2x1+0.0001 x0=2ms"*

gives the nor thward componen t of the f luid v elocit y.

There is another impor tant vector oper ator c alled the cr oss
product, but w e will def ine that a bit later.
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4. Partial Derivatives

For a function o f one independent variable, say x, the deriv ativ e gives
information about ho w the func tion, say f(ZC) changes when x
changes. This is the me aning of the first deriv ative.

df _Af

dx Az

In other w ords, if you make a small but f inite change Az, you get
a change in the v alue of the func tion A f. The deriv ative is the r atio
of these t wo changes, taken in the limi t when the changes be come
very small. A geometric al interpr etation is tha t the deriv ative is the
slope of a tangent line. The deriv ative can also be a function o f x
(i.e., in the pic tur e below, the slope of the tangen t line will change as
you move in Xx).

Fix)

When we have something tha tis a func tion o f multip le independen t
variables (like x, y, z and t), we define an equivalent oper ation tha t
tells us how the func tion changes when just one o fthe independen t
variables changes and all the others ar e kept constant. This is called

Partial Deriv atives | 13



the partial derivative . Itis wri tten wi th a special symbol OO instead
of the GO

The partial deriv ativ e of f with respectto x is wri tten
of
ox

and has the me aning of a change in f divide d by a
change in x calculated while holding all the other
independen t variables constant.

Key Takeaways

In fluid me chanics, we often wri te the oper ation o f taking
the deriv ativ e in each of the spatial dimensions as a v ector
oper ator:

9 6 9
ox’ Oy’ Ox

While this ma y seem a bit abstr act, the ne xt t wo sections
will be about t wo applic ations o f this v ector oper ator, in
order to c alculate the gradient and the divergence These
quantities will be fundamen tal to wha t we do in the r est of
the course.
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If you want more material to help y ou understand par tial
deriv ativ es, try this YouTube vide o:

Introduction to Ipﬁr’r"m’ derivatives

Ord:nm}; derivative. instantaneous ratt of change
eq. hi(T) = ﬁwf‘mg bill a5 Function of temperat ure
Qli\ - c_i.mj_e_a_a h I

=iy = Slope ot b wdh
— 7/ 4T change in T

. 7 M

Partial derivative P [ —=

instantantias rate at change £ Slope = _I_f.‘.;g:l :

functions af mulbple e iable T -\\__{

— oo

€q h (T 1) =heating bill as fuactron of b a =
: i / M

temperature T and imsulation I, J,

2h(t,1)
T

A YouTube element has been &cluded from this ver sion of the
text. You can view it online her e: https:// uw.pressbooksgpub/

ocean285?p= 105

Media Attributions

¥ DerivativeTangent by jacj adapted by Susan Hautala © CC BY-
SA (Attribution Shar eAlike)
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5 The Gadient

The gradient is a vector wi th a magnitude that quantif ies the total
amount of change of a field per uni t change in distanc e. It poin ts
along the dir ection o f the maximum change. The gr adient is only
defined for a scalar field. The oper ation o f taking the gr adient of a
scalar produces avector.

The easiest way to visualiz e this is with a two-dimensional
gradient of concentr ation (a scalar) in a horiz ontal plane as in the
figur e below. In this f igur e, higher concentr ations ar e shaded mor e
darkly and the blue arr ows show the c oncentr ation gr adient vector
field.

Key Takeaways

The mathematic al definition o f the gr adient of the scalar
field C (in our thr ee standard spatial dimensions ) is:
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oC oC oC
VC_ 8_x’8_y’%

wher e we have used the par tial deriv ative operator
defined in the pr evious chapter .

For a highly visual discussion of partial deriv atives and the
gradient, see this YouTube video:

Video by i |"Suppose we have
- " afunction of two
Eugene Khutoryanskj < varlables.

A YouTube element has been &cluded from this ver sion of the

text. You can view it online her e:https:// uw.pressbookspub/
ocean285?p= 132
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Media Attributions

¥ Gradient © CC BY-SA (Attribution Shar eAlike)
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6. The Divegene@

The divergence of a vector is the sum o f the par tial deriv ativ es of its
componen ts wi th r espect to their individual ¢ oor dinates.

GCAEUCEWEVS]

The divergence of a vector E written in terms o fits
componen ts in our usual ¢ oordinate dir ections

F = (Fx,Fy,Fz) is defined as:
oOF* i oOFY i oF~
ox oy 0z

V.-F =

You can get an in tui tive feel for the div ergence by sketching v ectors
in space and thinking about ho w these vectors are tending to
stretch out or squash the distanc e between.

Examples

Here are some examples of vector f ields, and the sign o f
their div ergence in a horiz ontal plane:
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y x ¥ x ¥
V.E:E)F +8F _AF +AF
ox dy M Ny

We will be considering v ectors that represent fluid velocity and
the flux of some property like salinity, or oxygen, in the oc ean. It
is impor tant to note tha t in the f irst c ase, where the vector f ield
is velocity, the divergence of an Qinmmpr essibleO fuid in thr ee-
dimensional spac e is zero because material elemen ts of water
cannot be str etched or squashed.

Key Takeaways

The divergence of the velocit y field in an inc ompr essible
fluid is z ero:
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Media Attributions

¥ Divergence2D by Susan Hautala © CC BY-SA (Attribution
ShareAlike)
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7. The Divegene Therem

The divergence theorem is an equality that can be proven for any
vector field. All of our conservation equations and lar ge-scale
budgets that are so useful in oc eanography are based on this
mathematic al principle. The div ergence theorem can be abstracted
to any vector field, but is most e asily understood b y thinking about

the concrete example wher e the vector field is the flux of some
property in the oc ean.

The divergence theorem relates the flux out ward thr ough the
surrounding surfac e of a closed volume to the total div ergence
inside. Consider the f igure below showing v ector field E and the
surface of a sphere.

1:":“

§ & -.-._\'.'g-.
%, Lkt

waN
K
W

.
i

LT I T
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This the orem is usually stated mathematic ally using surfac e and
volume in tegrals, but that is beyond the le vel of calculus expected
for this class. Instead, we will appr oach it by imagining that the
surface of the spher e is divided up into a very large number of
surface elements.

The i-th surfac e area element:

¥ has surface area @;.

is associated with a loc al value of the v ector f ield EZ

¥ has a unit normal vector ﬁi thatis dir ected out ward and
perpendicular to this surfac e element

w

¥ has an outward flux passing thr ough the surfac e Ez . ﬁi

The total out ward tr ansport (flux times ar ea) passing
thr ough the surfac e of the spher e = 27 (El . TALZ) a;

Next, we apply a similar ide a to the volume inside the spher e,
dividing i t up in to a very large number o f volume elemen ts.
The j-th in terior v olume elemen t:

¥ has volume V
¥ is associated with a loc al vector Ej

¥ is associated with a loc al divergence of that vector f ield

The total div ergence inside the spher e =

> (V-Ej)V;
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Key Takeaways

The divergence theorem sets the net tr ansport out ward
across the surfac e of a closed volume (e.g., the sphere in
the figur e above) equal to the total div ergence inside the

sphere.
> E®-mai=3 (V-E)V;
i J

Practic ally, if ther e is a net out ward tr ansport of a property across
some volume, ther e must be a source of that property inside the
volume (in or der for ther e to be a positiv e total div ergence).

With this f ormal basis, we can relate measurements of fluxes
across the sides of some ObxO in the ocean to what happens inside,
on average, and thereby develop budgets for various pr operties
of interest. As an example, imagine taking f lux measurements in
Admir alty Inlet (thr ough which most o f the w ater passes into or
out of Puget Sound), in the form of a vertical cross-section tha t
reaches from the oc ean surface to the bot tom and tha t cr osses from
one side of the passage to the other . By measuring the total f lux
of oxygen across this surfac e, we can infer the net production (or
uptak e from the atmospher e) of oxygen in Puget Sound. If there
is more oxygen leaving with the surfac e outf low than en tering in
the deep inflow, we know that oxygen is being added to the w ater
inside.

We can also take our budget principles do wn to v ery small (aka
OininitesimalO wlumes) and develop dif ferential f orms of the budge t
equations.
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For a highly visual discussion o f divergence and the div ergence
the orem, see the first half o f this YouTube vide o:

JEL |
\.n hn :uﬁac &1}

A YouTube element has been &cluded from this ver sion of the
text. You can view it online her e: https:// uw.pressbooksgpub/

ocean285?p= 163

Media Attributions

¥ DivergenceTheorem by Glosser.ca © Public Domain
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8. The Curl, and dfticity

The thir d of our impor tant partial dif ferential oper ations is taking
the cur | of a vector f ield. This pr oduces another v ector .

GCAEUCEWEVS]

The curl of the vector field F = (Fgc, FY, Fz) is
defined as:

V x

o (OFT _OFY OF* QR RV _OF
= \ oy 0z 0z Ox = Ox oy

We are only going to be concerned with the cur | of a two-
dimensional v ector f ield in the horiz ontal plane in this class. One
impor tant example is the cur | of the horiz ontal velocit y which is the
definition o f vortici ty, commonl y wri tten as ( or w (we will use ().
Since the z-componen tis zero in this ¢ ase, we see that the v ortici ty
only has a vertic al componen t.
(= Vx ov Ou
UyoRiz or Oy

Physically, the vorticity is a metric o f the loc al spinning motion o f
a fluid, in this ¢ ase around the v ertic al axis. The sign of the v ortici ty
relative to OUE) éllows the rig ht-hand rule: if y ou wr ap your fingers
in the dir ection o f the cir culation o f the vectors in the horiz ontal
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plane, your thumb will poin tin the dir ection o f the cur | vector in the

vertic al plane.

" AT r———n Y «

: ( A A F or v - L Y
o F F ¥ ¥ wr e A w W

A A d Foror v ey 4y
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‘ 4 F & # & = - " % 4 ¥ 1

‘. d d il " 1 1 T
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O i F oy

| " [} W F ¥ FoF

=7 | " R A
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As an example, imagine the North Pacific subtropical gyre, a
clockwise cir culation. To curl your fingers in a clockwise manner
(in the horiz ontal plane) with your rig ht hand, your thumb must
point downward. Thus the lar ge-scale curl of velocity for the
subtr opic al gyre is negativ e.

There is a fundamental the orem for curl that is analogous to
the Divergence Theorem that you will le arn about if y ou take
Multiv ariate Calculus. Itis called the Cir culation The orem. Butwe
wonOt go thee in this class.

For a highly visual discussion o f cur| see the second half of this
YouTube video (you watche d the first half in the last chapter ):

-_

n abautiparticle

dimen

A YouTube element has been &cluded from this ver sion of the
text. You can view it online her e: https:// uw.pressbookspub/

ocean285?p= 195
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Media Attributions

¥ Curl2D © CC BY-SA (Attribution Shar eAlike)
¥ CurlVector © Public Domain
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9. Estimating Brivatives
from Data

If we want to use these ide as in real world pr oblems, we probably
need to be able to estima te par tial deriv ativ es using data.

Here is some pretend data D for concr etenessO sak let@ say that
the y-axis is pressure (perhaps from from sea-surfac e height
measured by a satellite altime ter). For example, it mig ht be the
pressure as a function o f distanc e to the e ast (x) holding depth ( the
z-coordinate) and latitude (the y-coordinate) fixed.

p(x)atz=-50mandy =2 4iN
We want to use our me asurements of pressure at discr ete values
of longitude (xj) to estimate the first- and se cond- par tial
deriv ativ es of pressure with x. For example, we could use the f irst
partial deriv ative to estimate the pr essure gradient at, say, x2. As

another e xample, when w e work problems involving dif fusion, we
mig ht need to estima te the se cond par tial deriv ativ es.

30 | Estimating Deriv atives from
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An inter active or media element has been excluded
@ from this ver sion of the text. You can view it online
here:
https:// uw.pressbooksgpub/ocean285 /?p=219

9.1 Estimating the first partial derive

In the example above, the first partial deriv ative at x2 is
approximated by the change in p divide d by the change in x (i.e., the
Qise O wer the Orun O to gé the appr oximate slope of the tangen t line
at xo.

Key Takeaways

This is called a fini if feren roximation to the
partial deriv ativ e of pressure with r espect to x:

op| _ Ap _ p(x3) — p(x1)

ox o Ax T3 — X1
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Why did w e use points 1 and 3? If we used either
points 1 and 2, then the r esulting tangen t line w ould
have a slope that is mor e appropriate to a poin t that lies
between points 1 and 2. Since we want the tangen t line
slope at x2, we choose to tak e a difference using poin ts
that are centered on point 2. Not surprising ly, this is
called using a center ed dif ference approximation. Had

we used points 1 and 2 to calculate our A values, then
we would have used a backward dif ference

approximation (be cause we used inf ormation f or values
lower than, or behind, x2). Had we used points 2 and 3,
we would have used a forward dif ference

approximation.

9.2 Estimating the®nd partial deriative

The second deriv ativ e (or the deriv ativ e of the first deriv ative) gives
you the r ate of change of the slope o f the tangen t line wi th x. As
an example, if the se cond deriv ative is zero, then the slope does
not change wi th x, and the cur ve must be a straight line. For this
reason, the second deriv ative is also associated with the curvatur e
of a function. Positive second deriv atives indicate a tangent line
slope that incr eases with x. Negative second deriv ativ es indic ate a
tangent line slope tha t decreases with x.
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An inter active or media element has been excluded
@ from this ver sion of the text. You can view it online
here:
https:// uw.pressbooksgpub/ocean285 /?p=219

Key Takeaways

Below is a center ed finite dif ference approximation f or
the second deriv ativ e at poin t X2 wher e we assume that
T3 — X9 = X9 — 1 = Az

0_219 ~ p(xs) + p(x1) — 2p(z2)
Ox? (Az)?

2

Wher e does this f orm ula come fr om? We want to
approximate how the slope o f a tangent line changes in
X. We use a center ed dif ference first deriv ative to
estimate the tangen t line slope at poin t half w ay
between x1and X2, which is the poin t T2 — %AZE. And
then w e do the same for poin ts 2 and 3, which g ives an
estimate for the poin t Lo + %Ax Then we take the
change in these t wo slopes divide d by the change in x
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(which is also AT since the poin ts are at the half -w ay

marks).
8—2p N p(ws)A—ag?(wz) _ p(mQ)A_f(xl)
0x? 2 Ax

Add some algebra to turni tinto the pr evious
expr ession!

Media Attributions

¥ PressureVsX by Susan Hautala © CC BY-SA (Attribution
ShareAlike)
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PART I

ADVECTION AND
DIFFUSION

This part is under ¢ onstruc tion, and f or a while will just ¢ onsist of
fragments not e asily available in the ¢ ourse te xtbook.
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10 The Turbulent Diffusive
Flux

We will not go in to the de tails of the ph ysics of turbulenc e in this
course. At this point, our main c oncern is that turbulenc e is
associated with a much mor e efficient Qlif fusion O & properties in a
fluid c ompar ed to mole cular dif fusion.

Both lar ger scale flow and the turbulenc e are advectiv e processes.
The advective flux is the pr operty concentration (C) times the
velocity. Here we are going to just look at the flux in the
x-dir ection.

Fffldvective =Cu= (C + C/) (ﬂ + ’U/)

In the last e xpression, we have broken both the ¢ oncentration
and the velocity up into t wo componen ts: a time-me an componen t
indic ated by an overbar to indic ate that oper ation, and a c omponen t
that can fluctuate in time about this me an (but that has zero mean
itself). Realistic ally, this overbar mig ht represent a half hour
average D that® about the minimum amoun toftimeittakes to get a
good pic tur e of the statistics o f the turbulenc e in the oc ean D so the
mean flow is not a trul y a long-term me an, just a larger scale flow
field tha t is chang ing mor e slowly than a timesc ale of an hour or so.

We will no w multipl y out this last e xpression

Fiivective = Cu + Cu’ +uC’ +'C’

Now we will tak e the time a verage of each of these terms

F3gvective = Cu + Cu' +uC’ +u/'C’

(1) For the first term, the time a verage of the pr oduct of the t wo

time averages is redundant sinc e these are just constants in time.
Physically this r epresents the ad vectiv e flux of the pr operty by the

larger scale flow field.
(2) The second term is iden tically zero. The time-a verage
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concentr ation is just a number and the f luctuating part has zero
time average, so their pr oduct is zero.

(3) Similar ly, the thir d term is iden tic ally zero.

(4) The fourth term r epresents a time averaged corr elation
between velocity and property fluctuations. Physically, this term
represents the turbulen t tr ansport of the pr operty.

Simplif ying:

Fjﬁcdvective =Cu + u'C" = Cu + Fjggurb

If we had an instrumen t capable of resolving the turbulen t
fluctuations w e can measure the turbulen t tr ansport dir ectly. But
these measurements are typically expensive. So we try to model the
turbulen t tr ansport in terms o f things w e already know about the
larger scale flow and pr operty fields.

One simple and widel y used model of this pr ocess is to model
turbulen t tr ansport using Fick® Law of diffusion, but with a

diffusivity that is much (several orders of magnitude in the oc ean)
larger than the mole cular dif fusivity.

— oC
F%'urb =u'C' = _KTuTb E)
T

We usually drop the overbars from the time-me an quantities
(since that is what we are typically tr ying to model).

Here is an example (artif icial) time series o f vertic al velocity (w)
and temper atur e (T) with zero mean flow, but an under lying up ward
turbulen t tr ansport of heat. The bottom left panel shows the
individual wOTO pair the instan tindic ated by the r ed dot in the time
series on the top r ow. The value of the time-a veraged turbulen t
temper atur e transport is:

w'T" = 0.278

To get the possibly more useful quantity of turbulen t heat

transport, you would multipl y by fluid densi ty and heat capacity.
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https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion#Fick's_first_law

a A video element has been &cluded from this ver sion
of the text. You can watch it online her e:

https:// uw.pressbookspub/ocean285 /?p=295
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PART II1

STEADY-STATE
MOMENTUM BALANCE(S)

This part is under ¢ onstruc tion, and f or a while will just ¢ onsist of
fragments not e asily available in the ¢ ourse te xtbook.
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11Bernoulli Flow

Bernoulli f low is a term use d to describe a v elocit y field that to f irst
order obeys Bernoulli® Equation. The pressure (P), speed (U) and
elevation (z) at two points along the same str eamline (we will talk
mor e about Gstr eamlinesO in clasg in Bernoulli f low are related by
this e quation:

Key Takeaways

The Bernoulli Equa tion f or t wo points (subscripts 1 and 2)
along a streamline in fric tionless, inc ompr essible flow:

1 1
—Uf+£l+Wd:—%l+@+ﬂ@
2 Po 2 0o

Let® start with a simple case D the one-dimensional e astward
componen t equation (so that U=u) for ste ady (nho time-dependenc e)
and fric tionless f low:
ou 1 dp
u— = PGF = —— —
ox po Ox

where PGF = Prssure Gradient Force. In this form, if we
remember that the term on the lef t is equal to the L agrangian
derivative for this simple 1D f low, we learn that the L agrangian
acceleration is quan titatively related to the PGF via Newton ® Law
for a = F/m Althoug h the flow is steady, there are spatial
changes in velocity (accelerations following a water par cel) b i.e.
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Lagrangian accelerations f or a moving flow. We are now going to
change the lef t side via a reverse chain-rule f or dif ferentiation:

8 (1,\ AKE
%(§“>~A—x—PGF

In this form, we can see that the left side is telling us about
the spatial gr adient of kinetic ener gy (KE = %UQ) b the PGF is
incr easing (if positive) or decreasing (if negativ e) the kine tic ener gy
to the east along a streamline. For two points separated by a
distance A, their dif ference in kinetic ener ay AKFE can be
wri tten as:

AKE = A Gu?) — PGF x Ax

The rig ht side is the f orce times the distanc e, or the net work
done on the system by the PGF which is ne eded to change the
kinetic ener gy. Thus BernoulliCs Equation is r eally a statement of
conservation o f ener gy in the absenc e of fric tion.

Now we will w ork on the full e xpression for the PGF:

AKFE = PGF x Az = _1op x Axr = —iAp
po Ox 0

and if w e write dif ferences using values at poin t 2 minus poin t 1:

1, 1 5, 1

§U2 - §U1 = _%(Ih —pl)
or

1 1

2 po 2 Po

which is star ting to look lik e part of the e quation in the bo x.
Of course, it is not ac tuall y possible to ha ve a change of just one
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component of velocit y in space because of the c ontinui ty equation,
so this simple e xample has to be modif ied to include a t least one
mor e component of velocity. If one of those c omponen ts is vertic al,
then w e have to tak e into account changes in poten tial ener gy (PE
=gz). The equation in the bo x is a general form of the Bernoulli
Equation (we will not deriv e it) that is equivalent to:
AKFE + APE = PGF x Ax

where the KE is now related to the total f low speed, (
KE = %Uz). If you want mor e in the w ay of explanation and
derivation of the term in volving poten tial ener gy, see this Khan
Academy lesson QWhat is Bernoulli®s Equation 20
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Please contact user: hautala at pr essbooks if you see any problems
with this book.
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