Applied Multivariate Statistics in R

Applied Multivariate Statistics in R

JONATHAN D. BAKKER

UNIVERSITY OF WASHINGTON
SEATTLE, WA

@O

Applied Multivariate Statistics in R Copyright © 2024 by Jonathan D. Bakker is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Contents

"

—
N N = O

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

© ® N0 0 W

Acknowledgements

Introduction

Part |. Foundational Concepts

Installing and Running Software
Reproducible Research

Loading Data

R Basics

Data Adjustments
Transformations

Relativizations

Matrix Algebra Basics

Matrix Algebra to Solve a Linear Regression
Eigenanalysis

Properties of Distance Measures
Common Distance Measures

Multivariate Outlier Analysis

Part Il. Group Comparisons

ANOVA / MANOVA
Sample Datasets
Permutation Tests
ANOSIM

Mantel Test

MRPP
PERMANOVA
PERMDISP

RRPP

Complex Models

Controlling Permutations

Vii

m
18
23
41
51
55
67
76
81
85
92
109

16

19
122
130
140
147
153
166
176
188
201

25.
26.

27.
28.
29.
30.

3.
32.
33.
34.

35.
36.
37.
38.
39,
40.
4.
42.
43,

44,
45,
46.

Restricting Permutations

Comparison of Techniques

Part Ill. Classification

Types of Cluster Analyses
Hierarchical Cluster Analysis
k-Means Cluster Analysis
Using Groups

Discriminant Analysis

Overview of Classification and Regression Trees

Univariate Regression Trees

Multivariate Regression Trees

Part IV. Ordinations (Data Reduction and Visualization)

Types of Ordination Methods

PCA

NMDS

PCoA

RDA and dbRDA

CA, DCA, and CCA

Comparison of Ordination Techniques
General Graphing Principles

Visualizing and Interpreting Ordinations

Part V. Follow-Up Tests

SIMPER
ISA
TITAN

Appendix 1: Order of Data Adjustments

Appendix 2: Structure of Complex Experimental Designs

Appendix 4: Contrasts

207
23]

239
242
263
270
281
299
305
334

352
355
380
401
408
418
434
445
467

496
505
522

536
538
545

Acknowledgements

| thank Bruce McCune for permission to use the Garry oak plant community dataset that is the
primary example throughout these notes. Other datasets are drawn from published resources as
noted where used.

All data are available here: https://github.com/jon-bakker/appliedmultivariatestatistics

Please send comments and suggestions for how this can be improved to jbakker@uw.edu.

Acknowledgements | vii

Introduction

This book is a work in progress. It began as notes for students in SEFS 502, Analytical Techniques
in Community Ecology, at the University of Washington. These notes provide a background in
multivariate analysis of a wide range of data. My emphasis is on the practical application of these
techniques.

Many students have used this course, and their associated project, as part of their thesis or
dissertation. A number of students have also published their work in the peer-reviewed literature.

Most of the functions used here are provided within R packages as indicated at the start of each
chapter. Other data files, scripts, and functions are available through a GitHub repository associated
with this book (https:/github.com/jon-bakker/appliedmultivariatestatistics).

The book is organized in five parts:

Foundational Concepts — an introduction to R, data adjustments, matrix algebra, and distance
measures

Group Comparisons — ways to test for differences between pre-defined groups

Classification — ways to explore the data and group similar observations together

Ordinations (Data Visualization) — ways to reduce the dimensionality of multivariate data and/or
to visualize patterns within it

Follow-Up Tests — tests to identify how individual response variables relate to one or more
explanatory variables

1| Introduction

PART |

FOUNDATIONAL CONCEPTS

This section explores concepts that are necessary for all other aspects of the subject. Concepts are
presented in short chapters so that the reader can more easily find the information that they seek.

Introduction to R

Installing and Running Software
Loading Data

Reproducible Research

R Basics

Data Adjustments

Data Adjustments

- Transformations
Relativizations
Order of Data Adjustments

Matrix Algebra

Matrix Algebra Basics
Matrix Algebra to Solve a Linear Regression
Eigenanalysis

Distance Measures

Properties of Distance Measures
Common Distance Measures
Multivariate Outlier Analysis

Foundational Concepts | 2

1. Installing and Running Software

Learning Objectives

To demonstrate how to install R and RStudio software.
To become familiar with ways of navigating in R.
To learn how to install, load, and update R packages.

To understand how R help files are structured.

Resources

RStudio cheat sheets for reference:

RStudio IDE
Base R
Cheat Sheet:VEGAN

Introduction

R is an open source statistical language and is extremely versatile and customizable. The base
installation of R includes some capabilities for writing scripts and taking other actions, but RStudio
is @ more versatile graphical user interface (GUI) through which R can be accessed.

Installing and Running R

The official R website is: http://cran.r-project.org/. However, there are multiple mirrors that contain
the exact same information. You can choose the mirror that is nearest your location. Go to the R
website (or a mirror), and choose the appropriate operating system from the top center of the page
(box titled ‘Download and Install R).

Windows: Click on ‘base’, and then on the setup program (currently R-4.3.2-win.exe). Save this
file to a working directory.
Mac: Choose the setup program. Save this file to a working directory.

Once the file has downloaded, double-click on it to run it. Accept all defaults to install it on your hard
drive.

3 | Installing and Running Software

If you would like to install R on a thumb drive (with enough room!), change the install destination
during the installation, and choose NOT to create a Start Menu folder or desktop icon. Accept all
other defaults. (Note: | haven't fully tested this; you may need to install software to create a virtual
PC on your thumb drive first). For more details, see Appendix A of Dalgaard (2008) or Torfs & Brauer
(2014).

By default, R operates from a command line interface. When you open R, the main window
is displayed. This window, called the ‘R Console’, is where commands are executed, and their
numerical/textual results displayed.

R also uses several other windows:

Graphics
Editor
Data editor

These windows are only displayed when necessary. The Editor window is where multiple lines of
commands can be written and saved. This permits you to execute a series of commands
sequentially. It is extremely useful for saving code so it can easily be rerun in the future.

Installing and Running RStudio

While the standard installation of R does not include a graphical user interface (GUI), several are
available as packages that can be installed. In this course, we will not be using a GUI as | want you
to see and understand what is happening throughout the analyses. However, the default setting of
R is not entirely satisfactory either. Instead, we will use RStudio, an IDE (‘integrated development
environment’) for R that is available as a free download.

RStudio is available from https:/posit.co/download/rstudio-desktop/. The current version is
2023.09.1+494.

A guide to RStudio is provided on the RStudio IDE cheat sheet. More detail is available in the book
by van der Loo & de Jonge (2012).

When you open RStudio, R is automatically opened as well. The version that is running is displayed
in the Console. If you have multiple versions of R installed, you can select the version that you want
to use. To do so, go to ‘Tools / Global Options’ and select the ‘Change.. button below R Version. A list

of the installed versions will be displayed; select the one you desire. You may have to restart RStudio
for this to take effect.

RStudio Basics

The RStudio window is divided into several panes as shown and described below.

Installing and Running Software | 4

File Edit Code View Project Workspace Plots Tools Help
-2 Bl S K project: (Hone) -
0 dismondFricing.R® x 9] formatPMotR | diamends » =[] | Workspace History =
H FSowceonsave O # = + o _Source * | #lead> [J Swver | _Import Dataset= 3 Cleas &1
1 Tibrary(ggplot2) - Data
g source("plots,/formatPlot. R™) diamonds 53940 obs. of 10 variables
4 view(diamonds) Values
5 summary{diamonds) avesize 0. 7a7g
[
7 summary{diamondsSprice clarity character [8]
& avesize round (mean(diamonds icarat), 4) p ggplot[8]
9 clarity <- levels(diamondsiclarity)
10 Funtions
11 p qploticarat, price, format.plot(plot, size)
12 data-diamonds, color-clarity,
13 xlab-"carat”, ylab-"price”,
14 main="piamond Pricing™)
15 Files Fiols Packages Help -1
] B Tosm B Bpet- O 3 Cearan
. Diamond Pricing
151 B Top Levey = R Soript = L
Consale =]
% W z - Claity
Min. 0,000 min. 2 0.000 wWin. : 0.000 .« 1
Ist Qu.: 4.710 Ist Qu.: 4.720 1st Qu.: Z2.910
Median @ 5.700 Median @ 5.710 Median @ 3.530 sz
Mean @ 5.731 Mean : 5.735 Meam : 3.539 ! -
3rd Qu.: 6.540 3rd Qu.: 6.540 3rd Qu.: 4,040) L
Max., 10,740 max, S58.900 max, :31. 800 Price 1= WE2
= summary(diamonds Sprice) V1
win, 1st qu. wMedian mean Ird qu. Max.
326 a5 2401 3033 5324 1BB20 w2
» avesize <- round(mean{diamonds$carat), 43 Wi
= clarity <- levels{diamonds$clarityd
> p <- gplot{carat, price, IF
+ data=diamonds, color=clarity,
+ xlab="carat”, ylab="price”,
+ main="Diamond Pricing”)
>
= format.plot(p, size=24) I E
> | ; Carat
= .}

Example of the RStudio window showing its four panes: console (lower left), editor
(upper left), workspace and history (upper right), and files, plots, packages, and
help (lower right).

In the lower left is the R Console — the same as you see when you open R directly. There are also tabs
here for Terminal and Background Jobs.

In the upper left is an editor pane (this may not be displayed if you have not opened or created a
script). The editor pane is where you can open, edit, and save a script file containing many lines of
code. Thisis analogous to the editor window in R, but has additional features such as:

- Multiple scripts can be open simultaneously, each appearing as a tab in this pane.

- Font color changes to distinguish functions, commments, etc.

Auto-complete: when you type a left parenthesis or bracket, the closing parenthesis or bracket
is automatically created.

- Quotation marks: if you need to place material in quotation marks, you can do so by
highlighting it and then typing the quotation mark — they are automatically added before and
after the selected text.

Error-checking: when you place the cursor after a parenthesis, the corresponding parenthesis
that closes the clause is highlighted. This is particularly helpful when you have multiple
functions nested one inside another.

- Can comment or uncomment multiple lines simultaneously (Edit tab: Comment/Uncomment
Lines’ command).

In the upper right pane are four tabs:

Environment: displays summary details of the objects you have created in R (more on those
later).

5 | Installing and Running Software

History: a list of all of the commands that you've run during this session, in order.
Connections: allows you to connect to different data sources.
Tutorial: allows you to run tutorials about RStudio.

Finally, the lower right pane contains six tabs:

Files: allows simple navigation within your directory structure.

Plots: displays the graphics that you produce through commands sent to the Console. Can
move left to right to move between figures.

Packages: allows you to load or remove packages by simply selecting the checkbox beside their
name. Packages that are not installed (see below) are not included in this list.

Help: access to the help files associated with the base version of R and with installed packages.
Viewer: to view local web content.

Presentation: ability to create and display presentations that include R code and output.

Navigating in R

The >' prompt in the R Console indicates that R is waiting for a command.

You can execute commands from RStudio’s editor pane by clicking ‘Run’ or pressing the Ctrl-Enter
key combination. Selecting code before executing will alter what is run:

Place the cursor anywhere in a line of code (note: does not have to be at the end of the line).
‘Run’ will execute that line of code. If the line is part of a set of commands, the full set will be
run. However, this is not true if the commands are embedded within other types of
instructions. For example, a function consists of code ‘wrapped’ by commands about
argument names, etc. Placing the cursor in a line of code within a function will run the code
but not the associated wrapper lines.

Highlight multiple lines of code. ‘Run’ will execute all of the highlighted code.

Highlight a portion of a line. ‘Run’ will execute just the highlighted text and not the rest of the
line. This can be helpful when debugging code, for example as it allows you to execute one
portion at a time.

Once you've entered a command, you can use the up arrow to scroll through commands you've
already run. You can then edit and rerun a command without having to retype it all.

A '+’ prompt means that R is waiting for you to finish a command. This is often intentional — such as
when a command spans multiple lines — but also occurs if you forgot to enter the closing parenthesis
in a command.

R Packages

A function is a piece of code that conducts a specific action. The base installation of R contains
numerous functions for actions such as manipulating, summarizing, or graphing data. Some of the
commonly used functions are summarized on reference cards — these are helpful resources to keep
at hand.

One of the appealing features of R is that it is open-source and therefore users can create their
own functions. When users create multiple functions that are relevant to a particular theme, they
are encouraged to share those functions with others by bundling them as a package and posting
that package on the R website (https://cran.r-project.org/web/packages/), where they are available
for anyone to use. There are many more packages available on the R website than are evident in the

Installing and Running Software | 6

base installation of R: more than 20,000 as of December 2023! New packages are being constantly
created by users, and many are actively maintained and updated by those who created them or
others who are interested in that theme.

Installing and Updating Packages

Packages can be downloaded from the website, and are one of the main ways to customize your
usage of R. Packages that we will commonly use in this course include:

vegan
labdsv

permute

plyr

rpart

tidyverse (single name for multiple packages, including ggplot2)

Most of these packages are being actively revised and updated. Others get built upon in other
packages — for example, there are numerous packages that provide extensions to ggplot2.

For example, go to the R website and find the link to the vegan package (| recommend learning
how to navigate to it, but here's the direct link: https://cran.r-project.org/web/packages/vegan/
index.html). The current version is 2.6-4. The website contains the source code in Windows and
Mac formats, a PDF reference manual, and several vignettes (i.e., worked examples). You can install
this package by choosing the appropriate binary file from the website and extracting this file into a
folder in the R library.

However, an easier way to install and update packages is from within R or RStudio. From the
‘Packages’ tab in the lower right pane of RStudio, simply click on the ‘Install’ button and follow
the directions in the various windows. Notice that you can install several packages simultaneously.
Some packages use functions from other packages; these other packages (dependencies) are
automatically installed by default. If you look back at the R Console, you'll see the commands that
were executed throughout this process.

To update packages that have already been installed, click the ‘Update’ button. All packages are
compared against the versions on the website, and a list of packages with updated versions is
displayed in a window. When you select the package(s) to update and choose ‘ok’, the new versions
of these packages are downloaded and installed.

Loading R Packages

Simply installing a package doesn’'t make it accessible to you — you must load it into R before you
can use it. If you haven't loaded a package, R doesn't ‘know' it exists. One reason for this is because
different packages sometimes use the same function name to do different things. If both packages
are loaded, R won't know which function you mean.

To manually load a package in RStudio, simply go to the ‘Packages’ tab in the lower right pane, find
the package you want, and select the checkbox beside the package name. The command that is
executed by doing so is displayed in the R Console.

To load a package in R, or in a script, use the library() function:
library(vegan)

If the package requires other packages, those other packages are automatically loaded as well. If
the package is not installed, this function returns an error. A related function, require(), also loads

7 | Installing and Running Software

packages but differs in that it returns an error if unable to do so. This can be helpful if you want a
script not to execute if the package is not available.

Unloading a package can be done using the detach () function:
detach("package:vegan", unload = TRUE)

In RStudio, you can also unload a package by deselecting the checkbox beside the package name.

Help!

Finding Help

Details about R can be found in many places:

Books (see resources listed on course website)

R reference cards (e.g., Baggott 2012) and cheatsheets such as those from RStudio

Help files associated with the program

The R Journal, the open access, refereed journal of the R project for statistical computing
Internet searches. | often include ‘cran’ at the beginning of a query to focus attention on R-
related content. Much good information is available through sites such

as https://stackoverflow.com/.

You can get help about a function or topic in several ways. The ‘Help’ tab in the lower right pane
of RStudio contains links to help files for the base version of R and for all installed packages. It
also includes a search engine so that you can find help (note that it autocompletes with names of
functions from loaded packages that meet your criterion).

If you are searching for a function contained within a package that has already been loaded, and you
know the name of the function, you can search for it directly from the R Console:

help(plot)

?plot # ? 1s equivalent to help()

The help files that are displayed are the same as those available if you navigated there from the
‘Help' tab or searched the PDF or html reference manuals available through the R website.

If you aren’t sure of the name of the function or topic, you can do a more general search of the loaded
packages. To search for a function name that includes specified text:
apropos ("plot")

Use the help.search () function to search all of the packages installed on your machine, even those
that aren’t loaded. For example, soon we'll use the decostand () function to standardize data. This
function is available in the vegan package.

?decostand # Doesn’t work

help.search("decostand") # Works (if package is installed)!

The resulting window returns a list of packages and functions (in the format package:function) that
contain the specified text. This information can be entered together to open the specified help file
even if the package hasn't been loaded:

help(decostand, package = vegan)

?vegan: :decostand # Equivalent but faster entry

Of course, if you load the vegan package first, you can obtain the help file for decostand () directly:

library(vegan)
?decostand

Installing and Running Software | 8

Finally, you can use the args () command to display a list of the arguments, with their default values,
in the R Console:
args (decostand)

Interpreting Help Files

R help files are organized in a standard format, though not all files have all sections. Understanding
this format will help you interpret the contents. Learning how to skim a help file to identify the key
bit that you want to tweak is a valuable skill to develop when using R.

Section Contents

A generic description of what a function does. Can be hard to interpret as it uses specific R

Description |
anguage.

An example of how the command would be entered on the command line. The standard
format is something like:command (argl, arg2, ...)
Usage In this case, command is the name of the command, and argl and arg2 are the arguments
that enable you to customize the action. The ‘...’ indicates that additional arguments can
be included.

The details about each argument. Some are required, others are not. Some have default
Arguments values, others do not. If there are a limited number of possible values, that set of values are
usually identified here.

Further explanation of how the function works, how it differs from other functions, etc.

Details Sometimes the possible values for an argument are explained here.
Type of object returned (not always applicable). Object may contain multiple elements that
Value R -
can be extracted individually, manipulated, etc.
Warning
Note General comments about function.

References Articles or books that describe the function (or that the function is based upon).

Author(s) Person / people who wrote this function.
See Also A list of other functions that will perform similar or related actions.
Examples Text that can be copied and pasted directly into R to see how the function works. Often, the

correct answer is described in a comment (text following a # symbol).

R help files are organized in a standard format, though not all files have all sections. Understanding
this format will help you interpret the contents. Learning how to skim a help file to identify the key
bit that you want to tweak is a valuable skill to develop when using R.

An easy way to see R's potential as graphical software is through a demonstration:

demo (graphics)

While this demonstration runs, the commmands to produce a given graph are shown in the Console
and the graph itself is displayed in the ‘Plots’ tab. In this case, the code is actually a little above the
command prompt in the Console because the code for the next graph has been executed but the
results are not displayed until you advance to the next graph. The net result, however, is that, when
you find a graph that you like, you can copy the code and modify it for your data.

Another demo:
demo (persp)

9 | Installing and Running Software

Good books highlighting the graphical capabilities of R include Murrell (2006), Sarkar (2008),
Wickham (2009), Chang (2013), and Wickham & Grolemund (2017). The more recent of these titles
focus on the ggplot2 package, which provides extremely simple yet powerful graphing capabilities.
I highly recommend exploring it. Although it was not used to create the above demonstrations, we'll
use it later. The help files for this package (https://ggplot2.tidyverse.org/reference/) include many
visual examples.

References

Baggott, M. 2012. R reference card 2.0. 6 pg. http://cran.r-project.org/doc/contrib/Baggott-refcard-
v2.pdf

Chang, W. 2013. R graphics cookbook. O'Reilly, Sebastopol, CA.

Dalgaard, P. 2008. Introductory statistics with R. Second edition (First edition, 2002). Springer, New
York, NY.

Murrell, P. 2006. R graphics. Chapman & Hall/CRC, Boca Raton, FL.
Sarkar, D. 2008. Lattice: multivariate data visualization with R. Springer, New York, NY.

Torfs, P., and C. Brauer. 2014. A (very) short introduction to R. http://cran.r-project.org/doc/contrib/
Torfs+Brauer-Short-R-Intro.pdf

van der Loo, M.P.J, and E. de Jonge. 2012. Learning RStudio for R statistical computing. Packt,
Birmingham, UK.

Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York, NY.

Wickham, H., and G. Grolemund. 2017. R for data science: import, tidy, transform, visualize, and
model data. O'Reilly, Sebastopol, CA. http://r4ds.had.co.nz/

Media Attributions

RStudio

Installing and Running Software | 10

2. Reproducible Research

Learning Objectives

To consider the importance of reproductible research, and how R can enhance this.

To identify principles for analysis organization, scripting, and workflow design.

Opening Comments

There is a growing concern in science about the extent to which it is reproducible. In biomedical
studies, for example, the strain of organism or conditions in the lab can have much larger effects
than were previously appreciated (e.g., Lithgow et al. 2018). In ecology, these concerns recently led
to the formation of the Society for Open, Reliable, and Transparent Ecology and Evolutionary Biology
(SORTEE).

A similar issue relates computationally. An individual analysis requires hundreds of large and small
decisions, and some of those decisions can dramatically affect the conclusions. Computational
reproducibility should be easier to demonstrate than reproducibility in lab environments. Kitzes
et al. (2018) state that “a research project is computationally reproducible if a second investigator
(including you in the future) can recreate the final reported results of the project, including key
guantitative findings, tables, and figures, given only a set of files and written instructions.” Ideally,
the script you produce for this course will fit this description! Filazolla & Lortie (2022) provide
recommendations for writing clean code.

The field of data science has much to teach us about computational reproducibility. Options even
exist to analyze R code directly (McGowan et al. 2020).

General Practices for Reproducible Research

Clearly separate, label, and document all data, files, and operations that occur on data and files. In other
words, organize files in a clear directory structure and prepare metadata that describe them.

Document all operations fully, automating them as much as possible, and avoiding manual
intervention in the workflow when feasible. In other words, write scripts that perform each step
automatically. Where this is not possible, document all manual steps needed to complete a task.

Design a workflow as a sequence of small steps that are glued together, with intermediate outputs
from one step feeding into the next step as inputs. In other words, prepare your overall workflow
design so that you understand the different operations that need to occur, the sequence they need to
occur in, and how they support one another.

1 | Reproducible Research

Each of these practices is briefly described below. See Kitzes et al. (2018) for more information.

Analysis Organization

Projects

RStudio uses projects to help organize analyses. Specifically, a project is self-contained and provides
access to data, scripts, etc. We will follow this approach. For additional details, see Robinson (2016)
and Bryan (2017).

The main directory for the project is the working directory. This is where R will automatically look for
files, and where files that are produced will automatically be saved. This also provides portability, as
the project file will be useable by a collaborator even if their directory structure differs from yours.

When you open a R project, the working directory is automatically set as the folder in which the
project file is stored. You can confirm the working directory using the getwd () function:
getwd()

Note: one advantage of using a R project is that the working directory is automatically set. If needed,
however, you can use the setwd() function to change the working directory. You can specify a
particular folder by typing out the address, or you can use the choose.dir () function to open a
window through which you can navigate to the desired folder.
setwd("C://Users/jbakker/Desktop/SEFS 502/")

setwd(choose.dir())

Note that the slashes that map out the folder hierarchy are the opposite of what is conventionally
used in Windows.

Create a folder in which you will store all files associated with SEFS 502 class notes and examples.
Once you've created this folder, save a R project within it. Use this project to open R and work
through class examples.

Sub-folders

A key advantage of setting a working directory is that it allows a project to have a stable starting
point yet to remain organized by having items in the appropriate sub-folders. Commonly used sub-
folders include:

data

graphics

images

library

notes

output

scripts (note: most data scientists now would recommmend that you store your scripts on
GitHub. See ‘Workflow design’ below for more details)

Reproducible Research | 12

From the working directory, you can navigate using the relative path of a file rather than its absolute
path. Sub-folders are referenced by simply including them in the name of the file you are accessing.
For example, if the file ‘data.csv’ was stored in the data sub-folder, we could open it like this:

dataa <- read.csv('"data/data.csv", header = TRUE, row.names = 1)

Using relative paths keeps your code portable among machines and operating systems (Cooper &
Hsing 2017). However, note that you do need to have the same sub-folders in your project folder.

In the folder that contains your SEFS 502 class project, create the following sub-folders:

data
scripts
functions
graphics

You can also create additional sub-folders, such as one for class notes, one for readings, etc. if desired.

Project Options

RStudio allows you to save your history (record of code that was run previously) and the objects that
were created earlier. However, | advise against this because these shortcuts increase the chance
of errors creeping in. For example, objects created during earlier sessions are still available for
manipulation even if the current version of the script does not create them.

To turn these options off in RStudio, go to the ‘Tools’ menu and select ‘Project Options’. Under
the ‘General’ settings, set these options to ‘No’:

Restore .RData into workspace at startup
Save workspace to .RData on exit
Always save history (even if not saving .RData)

Scripting

R Scripts

Scripting is one of the powerful aspects of R that distinguishes it from point-and-click statistical
software. When a script is clearly written, it is easy to re-run an analysis as desired — for example, after
a data entry error is fixed or if you decide to focus on a particular subset of the data. To capitalize on
this ability, it is necessary to be able to manipulate your data in R. New users often want to export
their data to Excel, manipulate it there, and re-import it into R. Resist this urge. Working in R helps
you avoid errors that can creep in in Excel — such as calculating an average over the wrong range of
cells —and that are extremely difficult to detect (Broman & Woo 2018).

A script is simply a text file containing the code used (actions taken), along with comments clarifying
why those actions were taken. | save these files with a ‘R’ suffix to distinguish them from other text
files. Scripts can be created within RStudio’s editor pane (my preference) but could also be created
in R's Editor or even in a simple text editor like WordPad. Commands have to be copied and pasted
into R for execution.

A script can include many different elements, including:

13 | Reproducible Research

Data import

Define functions that will be used elsewhere (later) in the script
Data adjustments

Analysis

Graphing

These elements can be organized in several ways. In RStudio, for example, you can organize your
code into sections. Sections can be inserted via the ‘Code -> Insert Section’ command, or you adding
a comment that includes at least four trailing dashes (—-), equal signs (====), or pound signs (####).

You can use the Jump to’ menu at the bottom of the script editor to navigate between sections.

Individual sections can be ‘folded’ (minimized) to make the overall structure more apparent. The
code within that section is replaced with an icon consisting of a blue box with a bidirectional arrow in
it. Thisis also helpful because you can select and run the entire folded section simply by highlighting
the symbol that icon.

If your script includes multiple sections:

Alt-O minimizes all sections
Alt-Shift-O maximizes all sections

Interactive Notebooks (Jupyter, RMarkdown)

Interactive notebooks provide the capability to create a single document containing code, its
output (statistical results, figures, tables, etc.), and narrative text. They have been getting a lot of
attention recently. Key advantages are that the connections between data and output are explicit,
and the output is automatically updated if the data change.

There are two broad types of interactive notebooks:

Project Jupyter creates a file that contains the code, output, and narrative text. This file is not of
publication quality but is helpful for sharing an analysis with collaborators. UW is testing
opportunities to use JupyterHub for teaching; see the link in Canvas if you want to explore or

use this. Please note that this course's JupyterHub workspace is only active for this quarter, so if

you use it you will need to download any files that you wish to keep at the end of the quarter.
RMarkdown: A RMarkdown file consists of code and narrative text; Tierney (2020) provides a

nice overview of RMarkdown and how to use it. The code can include instructions to create
figures or tables. When this file is processed, the output specified by the code is produced and
the resulting document is saved as a .pdf or .html file. As such, this approach is closely aligned
with publication —in fact, Borcard et al. (2018) state that their entire book was written using
RMarkdown in RStudio! (I considered creating these notes in RMarkdown but apparently it
doesn't integrate with the PressBooks publishing platform).

Workflow Design

Ecologists (myself included) are rarely trained as programmers, but knowing some of the ‘best
practices’ that programmers use can improve the quality of our scripts. Examples of these practices
include:

Modularizing code (i.e., writing custom functions) rather than copying and pasting it to apply it
to different objects. This prevents errors where you update the code in one location in your
script but forget to update it elsewhere. Modularizing code is also helpful for maintaining

Reproducible Research | 14

consistency. For example, imagine that you want to create multiple figures with a consistent
format. If the script is written as a function, it can be called multiple times with different data.
Formatting details would remain the same from figure to figure. And, if you decided to adjust
the formatting you would only have to do so in one place!

Verifying that code is working correctly via assertions and unit tests (automated testing of
units of code)

- Version control to keep track of changes. Many (most?) data scientists use Git for this purpose.
Closely associated with this is GitHub, which enables code sharing. The data files for this book
are available in the course’s GitHub repository (https:/github.com/jon-bakker/
appliedmultivariatestatistics).

Cooper & Hsing (2017) is an excellent resource in this regard. There is also a growing body of
open-source resources (free on-line lessons; in-person workshops at various locations) available
through Software Carpentry. And, the ‘Happy Git with R’ website appears to be quite readable and

useful.

Some best practices and guidelines for formatting code are provided in Table 1 below.

TABLE 1 Common best practices and guidelines for formatting code in biology. Some of these practices are language dependent and
must be adjusted accordingly

Formatting

1. Horizontal length

2. Horizontal ordering

3. Horizontal spacing

4 Indenting

5 Naming
conventions

6. Parentheses

7 Vertical length

8. Vertical ordering

9 Vertical spacing

Description

The number of characters within a
line

The order in which functions are
executed

The distance between characters
separated by spaces

A starting position away from the
margin

The text pattern for naming objects,
functions or classes

Different bracket types to indicate
closure around operations

The total number of lines associated
with a script

The order in which lines are presented
in the script

The distance between lines separatad
by returns (i.e. lines)

Best practices

Between 80 and 120 characters with
longer sections separated by
returns

Nonmanipulative operations should
occur before others

Space should be added between
objects, arguments and operators

Indenting indicates nestedness of
lines within a larger element

Consistency is paramount. Consider
different patterns for objects
versus functions

Add horizontal or vertical spacing
when appropriate to make
obvious open/close parentheses.
Try to minimize nesting
parentheses

Script length is case-by-case but
ideally less is more

Dependencies should be listed
before dependents

Similar things should be grouped
to indicate relatedness. The
more lines between, the more
unrelated

Examples

Functions with many arguments can
have a return after each argument

(1) Data loaded

(2) Columns added
(3) Aggregation

data = datasetName
list = c(Obj1, Obj2)

Used in functions, if/else statements
and loops

snake_case
camelCase
Kebab-Case

A 1,000-line script could be split into
multiple scripts (e.g. functions vs.
analysis)

(1) Libraries

(2) Functions

(3) Loading data

(4) Analysis

A linear model with all its diagnostic
functions would be listed together

Common best practices and guidelines for formatting code. From Filazolla & Lortie (2022).

McCune & Grace (2002; ch. 8) provide a flowchart and tabular techniques that can assist in this
process. See this Appendix for a summary. Workflows can be described verbally or graphically, as in

this example:

15 | Reproducible Research

acmwir

- ncdfd
timeDate Public —
lubridate | holidays
I data.table
abind
dplyr -
stringr Mortality data Model
readr *| Fitting | INLA
tidyr Population)
reshapel
Li
Shapefiles Cross Prediction
validatio NUTS3
rgdal lidation |
spdep
sf
|
shiny Egplot2 '
leafpop [« | patchwork |
shinyalert . g viridis
shinydashboard RColorBrewer

Figure 1: Diagram of the workflow: data wrangling in black, analysis in green, post-processing in

orange and packages in red (timeDate; Wuertz et al., 2023, lubridate; Grolemund and Wickham, 2011,
dplyr; Wickham et al., 2023a, stringr; Wickham, 2022, readr; Wickham et al., 2022, tidyr; W 1arm
t al., 2023b, reshape?; Wickham, 2007, rgdal; Bivand et al., 2023, spdep; Bivand, 2022, sf; Pebesma,
2018, shiny; Chang et al., 2022, leafpop; Appelhans and Detsch, 2021, shinyalert; Attali and Edwards,
2021, shinydashboard; Chang and Borges Ribeiro, 2021, ecwmifr; Hufkens et al., 2019, nedfd;

2023, raster; Hijmans (2023), data.table; Dowle and Srinivasan, 2022, abind; Flate and Heiberger,
2016, geplot2; Wickham, 2016, patchwork; Pedersen, 2022, viridis; Garnier et al., 2021, RColorBrewer;
Meuwirth, 2022). NUTS stands for Nomenclature of Territorial Units for Statistics with NUTS3 being

the highest spatial resolution available and NUTSZ2 coarser but appropriate for policy making,.

Example workflow, showing packages used during data wrangling, analysis, and
post-processing. From Konstantinoudis et al. (2023).

Conclusions

The scientific process is built on the idea of reproducibility, both in the field and at the computer.
The ability to script an analysis is essential to ensuring that analyses can be shared and repeated.

References

Borcard, D., F. Gillet, and P. Legendre. 2018. Numerical ecology with R. 2nd edition. Springer, New
York, NY.

Broman, KW., and K.H. Woo. 2018. Data organization in spreadsheets. The American Statistician
72(1):2-10.

Bryan, J. 2017. Project-oriented workflow. https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
Cooper, N, and P-Y. Hsing. 2017. A guide to reproducible code in ecology and evolution. British

Ecological Society, London, UK. http:/AMww.britishecologicalsociety.org/wp-content/uploads/2017/12/
guide-to-reproducible-code.pdf

Reproducible Research | 16

Filazzola, A., and C.J. Lortie. 2022. A call for clean code to effectively commmunicate science. Methods
in Ecology and Evolution 13:2119-2128.

Kitzes, J., D. Turek, and F. Deniz (eds.). 2018. The practice of reproducible research: case studies
and lessons from the data-intensive sciences. University of California, Oakland, CA.
http://www.practicereproducibleresearch.org/

Konstantinoudis, G., V. Gomez-Rubio, M. Cameletti, M. Pirani, G. Baio, and M. Blangiardo. 2023. A
workflow for estimating and visualising excess mortality during the COVID-19 pandemic. The R
Journal 15(2):89-104.

Lithgow, G.J., M. Driscoll, and P. Phillips. 2018. A long journey to reproducible results. Nature
548:387-388.

McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. MjM Software Design,
Gleneden Beach, OR.

McGowan, L.D., S. Kross, and J. Leek. 2020. Tools for analyzing R code the tidy way. The R Journal
12:226-242.

Robinson, A. 2016. icebreakeR. https://cran.rstudio.com/doc/contrib/Robinson-icebreaker.pdf

Tierney, N. 2020. RMarkdown for scientists. https://rmd4sci.njtierney.com/

Media Attributions

Filazolla.Lortie.2022.Tablel
Konstantinoudis.et.al.2023_Tablel © Konstantinoudis et al. (2023) is licensed under a CC BY
(Attribution) license

17 | Reproducible Research

3. Loading Data

Learning Objectives

To demonstrate how to load data in R.
To introduce the sample datasets that we will use throughout the quarter.

To introduce how to use matching (3in%) to index an object and create new objects.

Resources

Broman & Woo (2018)

RStudio cheat sheets for reference:

Data Import with readr, readxl, and googlesheets4

Introduction

There are several ways to load data into R. Small datasets can be typed directly and assigned to an
object, though this is not practical for larger datasets. My preferred method for loading data is to
organize it in Excel, save the file, and then read it into R. Note that these functions assume your data
are organized in a rectangular format, following the recommendations of Broman & Woo (2018).

Key Takeaways

Data files should be organized in rectangular format. The simplest form has rows as samples and

columns as data:

Each row is a unigue record, such as the observations from one plot at one time.

Each column is a variable. Some of these may be explanatory (e.g., a column identifying the plot
and a column identifying the time of each sample was taken) and others may be responses
(columns identifying different species in a community, or other measurements made in that plot
and time.

Each cell is the value of a given variable (column) for a given sample (row). Missing values should

Loading Data | 18

be indicated as ‘NA’ or as zero.

While you can read data into R by typing in the full path to the desired filg, it is preferred to establish
a project folder and work therein as discussed in the ‘Reproducible Research' chapter. When you
open a R project file, the working directory is automatically set to the folder in which it resides.

You can hard-code the name of the file that you want to load. For example, if the file is saved in the
‘data’ sub-folder and is named ‘data.csv”:

dataa <- read.csv("data/data.csv")

(Note: | don't recommend using ‘data’ as an object name as there is a data() function within R)

Alternatively, you could use file.choose () to navigate to and select the desired file:

dataa <- read.csv(file.choose())

There are times when | find this helpful because it can be quick, but note that this is not automated
—if you ran the script again, it would pause here until you selected the file.

Text files are the most common type of files to be loaded, but others are possible as well.

Text Files

The main function to load data is called read.table(). This is a generic function with arguments
that allow you to customize the call to reflect how your data file is formatted. Some standard file
formats have had the required arguments hard-coded: read.delim() for tab-delimited text files,
and read.csv() for CSV files. The arguments that | find most helpful include:

file - the key required argument; the name of the file to be read.

header — whether the names of the variables are included in the first line of the file. The default
is that they are not (header = FALSE), but | almost always include them in this fashion and
therefore set header = TRUE.

row.names — the name or number of a column containing a field that you want to assign to row
names. Note that this will not work if the referenced column does not contain a unique record

for each row.
na.strings — unique values in the dataset that you want to be replaced with ‘NA" (Not

Available). For example, missing data might have been coded as ‘999’; you obviously would not
want to include these values when calculating an average.

As an example, let's load the oak plant commmunity dataset that is introduced below. This file has
column names in the first row, so we will include the header argument. It also has a unique code for
each entry in the first column, so we will include the row.names argument:

Oak <- read.csv("data/Oak_data_47x216.csv", header = TRUE, row.names = 1)

The readr package, part of the tidyverse, provides another set of functions to read rectangular
data.

19 | Loading Data

Other File Types

The readxl package allows you to load data from a specific sheet of a Microsoft Excel file. Formulae
within the Excel file will not be kept; just the resulting value will be loaded.

Large datasets are often stored in relational databases. There are packages that allow you to build
and run queries in these databases, and to export the data into R. RODBC is one example of this type
of package; many others are listed here:

https://cran.r-project.org/web/views/Databases.html

Verifying That Data Are Loaded Correctly

Loading data is (perhaps obviously) only useful if you assign the result to an object — otherwise, all
you've done is displayed it in the Console.

It's important to verify that the data were loaded correctly. There are several ways to do so by
examining the resulting object:

Check the size or dimensions of the object. This information is reported in the ‘Environment’
panel (upper-right quadrant) of RStudio, but we can also display it in the Console using the
dim() function. The results are always ordered as the number of rows followed by the number
of columns.

- View the first few records using head (). Can you guess what the tail() function does?

- View a data summary using summary ().

- View the structure of the object using str ().

Sample Dataset: Oak Plant Communities

The primary dataset that we'll use as an example throughout the course is from Quercus garryana
(aka Garry oak, Oregon white oak) stands in the Willamette Valley (Thilenius 1963, 1968). These data
were included as an example with PC-ORD, and | have reformatted them for R — | thank Bruce
McCune for granting permission to use them!

Three files are associated with this dataset. These and all other data files are available through this
book’s GitHub site (https://github.com/jon-bakker/appliedmultivariatestatistics):

Oak_Metadata.docx
Oak_data_47x216.csv
Oak_species_189x5.csv

Download these files and save them in the ‘data’ sub-folder within your SEFS 502 folder (the one that
contains the R project for these classes). We'll use them throughout the quarter.

Oak_Metadata.docx explains the other files. We will not be loading it into R, but be sure to look
through it. You will get to create a similar metadata file for your class project.

Oak_data_47x216.csv contains the response and explanatory variables for each of the 47 stands. The
response variables are the abundances of 189 species in each stand. The explanatory variables are
27 stand-level attributes. | call them explanatory variables for simplicity; in reality, it would be more
accurate to term them ‘potential explanatory variables. Rows correspond to plots and columns

Loading Data | 20

correspond to variables in this object. Most analyses assume the data are structured this way. If your
data are reversed, you can re-organize them this way using the t () function to transpose the object
(however, if they are reversed you may also have issues with regard to the classes of the objects).

Oak_species_189x5.csv contains the species codes associated with this project along with some
simple information about each taxon, including its scientific name and life form (tree, shrub, herb,
graminoid).

Note: An alternate way to organize these data is to have the response and explanatory data in
separate files. Having separate files is helpful for keeping the two datasets distinct, but can cause
problems if, for example, the order of data is rearranged in one but not the other. As a result, the
preferred approach is to store the species data and explanatory data together in a single file
that is loaded into R and then manipulated there to create new objects containing the desired
components.

Loading and Indexing the Oak Plant Community Data

We are going to be using these data throughout the quarter. Each time we do so, we will need to
load them and make some initial data adjustments. We begin by loading both data files:

Oak <- read.csv('"data/Oak _data_47x216.csv", header = TRUE, row.names = 1)

Oak species <- read.csv("data/Oak_species 189x5.csv", header = TRUE)

One of the columns in 0ak_species is a list of the species codes. We can select the response
variables from 0ak by matching the column names from 0Oak against the names in this list. Doing
so is much easier and less error-prone than manually typing them all out. We will use an extremely
useful operator, $in%, to do so. It works like the match() function, but is more intuitive: it selects
those elements from the object on its left that are in the object on its right, and ignores elements
that are not present in both objects.

Oak_abund <- Oak[, colnames(Oak) %in% Oak species$SpeciesCode]

Use the functions that were introduced above (Verifying That Data Are Loaded Correctly) to explore
this new object and satisfy yourself that it contains just the species data.

We can also use the $in% operator to find non-matches (i.e., column names that are not included in
the list of species codes):
Oak_explan <- Oak[, ! colnames(Oak) %in% Oak_species$SpeciesCode]

Be sure you understand what happened here! These variables should all be explanatory variables
(i.e., stand-level attributes). However, if a species was not named identically in both objects then it
would also be included in 0ak_explan.

Key Takeaways

If data are being combined across objects, it is much safer to do so via matching than by assuming that
the samples are in the same order in both objects.

21 | Loading Data

References

Broman, KW., and K.H. Woo. 2018. Data organization in spreadsheets. The American Statistician
72:2-10. doi: 10.1080/0031305.2017.1375989

Thilenius, J.F. 1963. Synecology of the white-oak (Quercus garryana Douglas) woodlands of the
Willamette Valley, Oregon. Ph.D. dissertation. Department of Botany and Plant Pathology, Oregon
State University, Corvallis, OR. 151 p.

Thilenius, J.F. 1968. The Quercus garryana forests of the Willamette Valley, Oregon. Ecology
49:1124-133.

Loading Data | 22

4. R Basics

Learning Objectives

To understand the object-oriented nature of R, including object names and classes.
To understand how objects can be manipulated via operators and indexing.
To introduce ways to combine functions via nested functions and piping.

To introduce the tidyverse and other ways to manipulate data, including combining objects.

Resources

Manly & Navarro Alberto (2017, ch. 1)

RStudio cheat sheets for reference:

RStudio IDE

Base R

Data Import with readr, readxl, and googlesheets4
Apply Functions with purrr

Data Tidying with tidyr

Data Transformation with dplyr

Data Visualization with ggplot2

Dates and times with lubridate

Factors with forcats

String Manipulation with stringr

Cheat Sheet:VEGAN

Git and GitHub with RStudio

Other cheat sheets available at https://posit.co/resources/cheatsheets/

Key Packages

tidyverse, plyr

23 | R Basics

Introduction

If you are new to R, you might find it helpful to read the brief “Field Guide to the R Ecosystem”
(Sellors 2019), which introduces the main components of the R ‘ecosystem’. Robinson (2016) also
summarizes the key aspects of R in his “icebreakeR”. If you are familiar with SAS or SPSS, you may
find the ‘Quick-R’ website particularly helpful.

For an introduction to the basic instructions about R, see the appendix to chapter 1 of Manly &
Navarro Alberto (2017), chapter 1 of Dalgaard (2008), Paradis (2005; sections 2-3; online), and Torfs &
Brauer (2014). Somewhat more advanced references include Adler (2010) and Borcard et al. (2018).
Finally, very comprehensive reference materials are provided in the official R manual by Venables et
al. (2023) and in many other publications, including Crawley (2012), Wickham (2014), and Wickham &
Grolemund (2017).

For day-to-day reminders when using R, cheatsheets such as those linked to above can be very
helpful.

Assigning Names

By convention, R code is displayed in a different font than regular text.
Name objects by assigning them to a name:

name <- object

R is Object Oriented

R is object oriented. This means that each variable, dataset, function, etc. is stored as an object.
Each object is named, and can be manipulated.

Objects are created by assigningthem to a name. When naming objects, there are a few
conventions to keep in mind:

Must begin with a letter (A-Z, a-2)
Can include letters, digits (0-9), dots (.), and underscores (_)

- Are case-sensitive — n and N are different objects
No size limits that | know of. You can create long and descriptive names for your objects ... but
you'll have to type them out every time you need to call them.
If you specify an object that already exists, the existing value assigned to that name is over-
written without warning

Although there is considerable flexibility in how objects are named, consistency is very helpful.
Some key recommendations are provided in the textbox below.

R Basics | 24

Naming Conventions

The Tidyverse Style Guide (Wickham 2020) recommends:

Use only lowercase letters, numbers, and the underscore (_) when naming variables and
functions.

Use the underscore to separate words within a name. For example, day one rather than dayone.
Use nouns for variable names and verbs for function names.

Avoid the names of common functions and variables. For example, if you named your data object
as data it would easily be confused with the data () function.

Operators

Objects are manipulated via operators and functions (other objects). Common operators include:

Operator Description
Mathematical

+ - Addition, Subtraction
* / Multiplication, Division
Exponentiation
Relational

Assignment: items to right of operator are assigned to name on left of operator. While these
<- = operators are synonymous, ‘<-'is recommended because it can only be used in assignment
while ‘=" can be used in many other situations. ?assignOps for details.

-> Rightwards assignment: items to left of operator are assigned to name on right of operator
== Test of equality

1= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
Logical

& && And

l1] Or

! Not

25 | R Basics

?Syntax for details about many of these operators, including their precedence (the order in which
they are evaluated).

If you type in an expression but don't assign it to a name, the result will be displayed on the screen
but will not be stored as an object in memory. For example:

2 + 3 # Result not stored in memory

n<-2H+3

n

n+ 3

Do you see the difference? This is a trivial example because it involves a single number, but the
principle holds even with complex analyses (e.g., of objects that consist of many elements). Here is
a random sample of 100 observations from a standard normal distribution (i.e., with mean = 0 and
standard deviation =1):

N <- rnorm(100)

Now that all of these elements have been assigned to the object N, they can be manipulated en
masse. To multiply each of these random samples by 2:
2 * N

How would we save these new numbers to an object?

We could also calculate the average of these random samples:
mean(N)

Your mean value should not match mine exactly. Why not?

Multiple commands can be written on a single line if separated by semi-colons. This can be helpful
to save space in a program script. For example, we assigned the result of adding 2 and 3 to the
object n above, but this result wasn't displayed on the screen until we requested it. We could do
both functions on a single line, separated by a semi-colon:

n<- (4 *5) / 2; n# Note that we’ve now reassigned ‘n’ to a new object!

We can also wrap a function in parentheses to simultaneously execute it and display it on the screen:
(m <- 1:10)

Comments

Functions can be annotated by adding comments after a # Anything from the # to the end of the
line is ignored by R.

Comments are useful for annotating code, such as explaining what a line does or what output is
produced. For example, | often use a comment to document the dimensionality of an object — this
gives me a quick way to check that the code is producing an object of the correct size when | rerun
it. However, some argue that comments should be used minimally as they easily become out-of-
date and can therefore be confusing when checking code (Filazzola & Lortie 2022).

Comments can also be helpful when writing larger pieces of code, as you can selectively turn lines
of code off or on by adding or removing a # from the front of the line. In RStudio, you can apply this
to multiple lines at once by highlighting those lines and selecting ‘Code -> Comment/Uncomment
Lines'.

R Basics | 26

In the RStudio editor pane, comments are displayed in a different color than non-commented code.

Object Classes

Every object in R belongs to one or more classes. Classes have distinct attributes which control
what type(s) of data an object can store, and how those objects may be used. Many functions are
built to only work for objects of a specified class. The help file for a function will often specify which
class(es) of object it works on.

Class Description
numeric One-dimensional. ‘Regular’ numbers (e.g., 4.2).
integer One-dimensional. Whole numbers (e.g., 4).

character One-dimensional. Text (e.g., four).
matrix Two-dimensional. All data within an array must be of the same type.
array Multi-dimensional. All data within an array must be of the same type.

Two-dimensional; resembles a matrix, but data within different columns (vectors) may be of
data.frame different types. Data within a given column must be of the same type, and all columns must
be of the same length. This is one of the most flexible and common ways of storing data.

Multi-dimensional; similar to a data frame but the ‘columns’ do not have to be the same

list length. The objects that result from R functions are often stored as lists.

A collection of items. Can be character (forest, prairie) or numerical (1, 2, 3). If specified as
explanatory variables in an analysis, character data are often recognized as factors and treated

factor appropriately, but numerical data may be assumed to be continuous and treated as covariates
unless specified as a factor. If the levels are ordinal (e.g., low, medium, high), the correct
ordering can be specified.

logical Binary (True/False). Often used to index data by identifying data that meet specified criteria.

A vector is a one-dimensional series of values, all of which much be of the same class (e.g., integer,
numeric, character, logical). Another way to think about this is that the vector will be assigned to the
class that applies to all values. For example, use the class () function to find out the class of each of
these objects:

X <- c(l:4)

y <- c(1l:3, 4.2)

z <- c(1l:3, "four")

You can also ask whether an object is of a particular class:
is.character(x)

is.character(z)

Can replace the class name with that of other classes

You can force an object into a desired class using a function such as as.matrix(); R will do so if
possible or return an error message.

A key aspect of importing data into R is verifying that the data have been assigned to the proper
classes so that they are handled appropriately during analyses. If data are not assigned to the

27 | R Basics

proper class, the results of an analysis may be very different than expected. For example, consider
an explanatory variable with numerical values corresponding to levels of a factor (1 = urban, 2 =
suburban, and 3 = rural). Unless instructed otherwise, R will assume during data import that this
variable is numeric. If thisis not recognized and the class re-assigned, an analysis with 1m() will treat
this as a regression instead of an ANOVA. The following example illustrates this.

An Example: Drainage Class

Let's illustrate how object classes are dealt with differently by looking at the drainage class of the
stands in our Oak dataset. We begin by loading the data:

Oak <- read.csv('"data/Oak _data_47x216.csv", header = TRUE, row.names = 1)

Now we can explore the variable ‘DrainageClass”
class(Oak$DrainageClass)
str(Oak$DrainageClass)

This variable has four unique values:
unique (Oak$DrainageClass)

Is the difference between ‘well' and ‘poor’ the same as that between ‘well’ and ‘good’? No; these
data are ordinal. To acknowledge this in R, we can change the class to recognize that these levels
are ordered. For clarity, we'll create a new column that contains the same information but in a new
class:

Oak$DrainageClass.Ordered <- factor(Oak$DrainageClass, ordered = TRUE, levels =
c("Poor", "Moderate", "Good", "Well"))

Verify that the structure of the new column differs from that of the original column.

One way to see how R treats these objects differently is to graph them.
library(ggplot2)
ggplot(data = Oak, aes(x = DrainageClass, y = SppRich)) + geom point()

R Basics | 28

50- - .

5 ! :
o L]

o 40- : . | :

d :

w - L] &

30-) 1

L |

T L]

20- :

L]

Good Moderate Poor well

DrainageClass

Example graphic showing species richness in stands of differing
drainage class, where those classes are organized in
alphabetical order.

Does it make sense to arrange drainage classes in this way (i.e., alphabetically)? No.

ggplot(data = Oak, aes(x = DrainageClass.Ordered, y = SppRich)) + geom point()

60 - -
50- . .
5 . |
v L}
%_4['_ L] L] ‘ !
o
w - ¥ - !
30- -]
& |
7 L]
20- :
L]
Poar Moderate Good Well

DrainageClass. Ordered

Example graphic showing species richness in stands of differing
drainage class, where those classes are organized in order of
increasing drainage.

Note that the levels on the x-axis are now in order of increasing drainage.

If we were confident that we did not need the data in the original class any more, we could have
overwritten it by assigning the results of this command to that object. However, ordinal factors are
analyzed via polynomials rather than via ANOVA:

29 | R Basics

summary (lm(SppRich ~ DrainageClass, data = Oak))
summary (1lm(SppRich ~ DrainageClass.Ordered, data = Oak))

| therefore find it helpful to keep both variables so that | can use the unordered factor for analysis
and the ordered factor for graphing.

Indexing

One powerful feature of R is the ability to index objects to extract or manipulate elements that meet
certain criteria. The type of indexing depends on the class of the object.

With one-dimensional objects (which classes?), indexing is done by using square brackets to
reference the desired element(s) by their position in the sequence. For example, if we want the
fourth elementiny:

yl4]

With two-dimensional objects (which classes?), indexing requires two pieces of information to
reference the rows and columns of the desired element(s). This can be done using square brackets
to refer to the [row, column] of interest. If we want all row or all columns, we can leave that part
of the indexing blank — while still including the comma. Here, we will create a simple data frame
containing x, y, and z — all of which were created above — and then index it.

xyz <- data.frame(cbind(x, y, 2))

xyz[, 2] # all data from second column

xyz[, "y"] # ditto

xyz[2 ,] # all data from second row
xyz[c(2:3),] # data from second and third rows
xyz[-1,] # all data except the first row

xyz[2 , 2] # data from second row, second column
xyz[2 , "y"] # ditto

For clarity, it is recommended to include a space after the comma within the brackets. Some folk
leave a space before the comma too. These spaces do not affect the indexing.

Columns within a data frame can also be indexed by name using the string symbol ($):
Xyz$x

Note that this column is a one-dimensional vector, so if we are calling it then further indexing of
elements within it are the same as for other one-dimensional objects:
xyz$x[3]

Key Takeaways

Index a one-dimensional object via [item]. For example, the 2nd observation in the object x: x[2]

Index a two-dimensional object:

R Basics | 30

Via [row, column]. For example, the 2nd observation in the 1st row of column 1in the object xyz:
xyz[2, 1]
If the object has named columns, use $ to return a column by name: object$column name

When possible, index by name rather than by position.

Similarly, we can index our Oak data frame to focus on individual plots (rows) and/or variables
(columns). Some examples:

Oak[, 1] # Refers to all data from column 1 (plot elevation)

Oak[, "Elev.m"] # Ditto

OakS$Elev.m # Ditto — but only works for data frame columns

Oak[1l:2 ,] # Refers to all data from rows 1 and 2
Oak[c("Stand01l","Stand02") ,] # Ditto

Oak[-5 , 1] # All elevations except that in the 5th row

What is the elevation of stand 027

Different types of indexing can be combined together. For example, we could choose particular
columns to focus on and then index the rows of those columns. The next section presents three
ways to conduct sequential actions on an object.

Conducting Multiple Sequential Actions

Often we want to conduct multiple actions in a sequence. For example, we might want to index
a subset of the data that meets particular conditions. This can be done in at least three ways: as
a series of separate actions, nested functions, and piping. I'll illustrate these using an example in
which we want to calculate how many plots have an elevation above 100 m.

A Series of Separate Actions

The easiest way to solve this example is with a series of steps. Here's one solution:

oak elevations <- Oak$Elev.m
gtl00 <- oak elevations > 100
sum(gtl100)

[1] 35

31 | R Basics

The first step indexed the column of interest. The second step evaluated whether each value
met the criterion — the resulting object, gt100, consists of a series of trues and falses. TRUE is

automatically treated as 1 and FALSE as O, so in the third step we summed them to produce the
answer.

The disadvantage of this approach is that we've created intermediate objects (oak_elevations,
gt100) for which we have no other use. Intermediate objects like this can be cumbersome if they
are not also needed later in the code, and can make it difficult to keep track of the objects that we
do want to use later. If there are small numbers of them, they can be manually removed:

rm(oak elevations, gtl100)

Nested Functions

By nesting one function inside another, we could have done all of these actions in a single step:

sum(Oak$Elev.m > 100)

[1] 35

Nested functions are common and very useful. However, they can be complicated to write,
particularly because each function may have associated arguments that need to be referenced
within the set of parentheses relating to that function — and it can be confusing to keep track of all
those parentheses. For example, here is a more complicated example in which we index some
data, relativize it, and then calculate the Euclidean distance between every pair of samples. We'll
learn soon what relativizing means and what a Euclidean distance is, but for now just observe how
I've written this code with indenting and colors to illustrate the nested functions and show the
function to which each argument belongs:

library(vegan)
geog.dis <- vegdist(
X = decostand(
x = Oak[,c("LatAppx", "LongAppx")],
method = "range"),

method = "euc")

Here is the same code in a compact form (i.e., without indenting or named arguments):
geog.dis <- vegdist(decostand(Oak[,c("LatAppx","LongAppx")], "range"), "euc")

Nested functions have several disadvantages:

It can be confusing to keep track of which set of parentheses relates to which function.
Interpreting code can be challenging: you have to start from the inner-most set of parentheses
and work your way outward (in both directions!).

Adjusting code can be challenging. In particular, if we want to remove an intermediate step in
a series of nested functions, we need to determine which parentheses and arguments to
remove. Imagine removing decostand() from the above code.

R Basics | 32

Piping

The pipe is an operator that allows you to feed the output of one function directly into another
function. It is a technique that | find extremely helpful. See chapter 14 of Wickham & Grolemund
(2017) for more information and examples of piping.

Piping is available through the pipe operator, $>%, in the magrittr package. Beginning in version
4.1.0, the forward pipe’ (| >) is included in the base functionality of R. From what | have observed so
far, these operators function identically.

The pipe is used at the end of one line to indicate that the output of that line is input for the next
line. Specifically, the output of one line is input for the first argument of the function on the next
line. Wickham & Grolemund (2017) describe it as focusing on verbs (actions), rather than nouns.

Applying similar actions to our data:
oak |>

filter(Elev.m > 100) |>
pull(Elev.m) |>

length()

[1] 35

This may look more complicated than necessary for a simple example, but piping can be powerfully
applied to more complicated sets of functions. For example, here is the more complicated example
as in the nested functions above, and with the same color-coding:

library(magrittr)
geog.dis <- Oak[,c("LatAppx","LongAppx")] |>
decostand("range") |>

vegdist("euc")

Note how much easier this is to read than a set of nested functions. The steps are listed in the
order they are implemented, rather than having to read outward from the inner-most function. This
makes the code easier to write and to tweak. For example, if | wanted to exclude one step from the
set of functions, | can simply comment out that line.

One caveat is that not all functions work within pipes (this is why | didn't use the same functions to
calculate the number of stands with elevations above 100 m), although | expect that to change now
that piping is built into the base R installation — existing functions will be increasingly updated to
work with the |> function.

Key Takeaways

Piping allows code to be easily read — steps are listed in the order they are implemented — and modified.
The $>% and |> operators are largely interchangeable.

When viewing code that includes a pipe, think of it as the phrase “and then”. For example, this code

33 | R Basics

takes the object Oak and then filters it to those observations with elevation above 100 m:
Oak |> filter(Elev.m > 100)

Descriptive Statistics

Without indexing, functions are automatically applied to all columns in a matrix or data frame. This
is evident if you use the summary () and str () functions:

summary (Oak)

str(0Oak)

Note that different types of data are summarized as appropriate, and that the class of each column
is identified in its structure. Functions can be applied to rows within the apply () function.

Once we know how to index our data, we can apply functions to the selected elements:
summary(Oak[, 1]) # Returns range, mean, and quantiles

summary (Oak[, "Elev.m"]) #equivalent - range, mean, and quantiles
stem(Oak[, 1]) # Stem and leaf plot

hist(Oak[, 1]) # Histogram

There are many other standard functions that can be wused to examine your
data: max(),min(), quantile(), range(), etc. You can also create your own functions —we'll explore
this later.

Borcard et al. (2018) note the importance of exploratory data analysis — visualizations and simple
statistics — when familiarizing yourself with a dataset. They illustrate how the above functions, and
many others, can be used to do so. Zuur et al. (2010) also provide helpful ideas about exploratory
data analysis.

R Basics | 34

Manipulating Data in R

The Tidyverse

Data can be manipulated using base R functions, but more
intuitive means of doing so have been developed. In
particular, Hadley Wickham and colleagues have produced
the tidyverse, a number of ‘opinionated’ packages that share
the same grammar. Key aspects include:

Ability to pipe

Don't need to put column names in quotation marks
(usually) when calling them

Consistent terminology that works across packages

These packages can be installed en masse by installing
the tidyverse package. It includes the following core
packages:

readr, for data import

tibble, for a modern re-imagining of data frames
dplyr, for data manipulation

tidyr, for data tidying

purrr, for functional programming

ggplot2, for data visualization

stringr, for working with strings (characters)
forcats, for working with factors

lubridate, for working with dates and times

=
readr
e

These packages are the focus of the book by Wickham & Grolemund (2017) and its
associated website (or the second edition of this book, which has its own website). And, links to
cheatsheets for most of these packages have also been provided above. One way to consider how

these packages interrelate is as follows:

dplyr
stringr
readr - tidyrw;,%_b . forcats
tibble ™ purrr = - .~ lubridate ggplot2
Visualize

; ; P /

\

Import — Tidy — Transform) — Communicate
\ Model

Program

Linkages among tidyverse packages. From Cetinkaya-Rundel (2023).

35 | R Basics

Some additional packages are also available with more specialized applications — see the tidyverse
website for details. In particular, | would highlight:

readxl, for reading Microsoft Excel spreadsheets

googledrive, for interacting with files stored on Google Drive

magrittr, for the pipe (%>%). Note that this has been incorporated into the base functionality of
new versions of R as |>and is being replaced by it.

tidymodels, for modeling and machine learning. This is actually a collection of packages, like
the core tidyverse. Most are for parametric models; | haven't investigated their application
with the types of models that we focus on in this course.

broom, for organizing model output

As an example of the tidyverse grammar, let's work with the stand-level attributes related to soil
groups and soil series. Let's find out how many stands occur in each combination of soil group and
soil series, and calculate summary statistics about species richness in each combination. We'll use
piping so that the output of one function is the input of the next function.

Oak.soil.sum <- Oak %>%
group_ by (SoilGroupName, SoilSeriesName) %>%
summarize (N = length(SppRich),
MinS = min(SppRich),
MeanS = round(mean(SppRich), 1),
MaxS = max(SppRich),
.groups = "keep")
Oak.soil.sum

A tibble: 7 x 6
Groups: SoilGroupName, SoilSeriesName [7]
SoilGroupName SoilSeriesName N MinS MeanS MaxS
<chr> <chr> <int> <int> <dbl> <int>
1 Alluvial Amity 3 32 38 44
2 Basic.igneous Dixonville 5 27 38.4 61
3 Basic.igneous Nekia 4 32 39 51
4 Basic.igneous Olympia 2 28 31 34
5 Sedimentary Carlton 6 23 29.2 35
6 Sedimentary Peavine 5 33 37.4 41
7 Sedimentary Steiwer 22 16 33.3 51

Note that we created, and named, new variables for the number of stands (N) in each group along
with the minimum, average, and maximum species richness in each group.

This type of summary is helpful both when manipulating data and when summarizing it for
graphing purposes, etc.

plyr

The plyr package is related to the tidyverse (but not included in it), and is one I've found particularly
helpful. The basic process within plyr is to split an object, do something to it, and then re-combine
it (Wickham 2011).

R Basics | 36

There are several functions within plyr that have the same structure and naming convention:

The first letter (a, d, or |) indicates whether it starts with an array, data frame, or list
The second letter (also a, d, or) indicates whether it produces an array, data frame, or list.

For example, ddply () takes a data frame, does something to it, and produces a new data frame. Its
usage is:

ddply(.data, .variables, .fun = NULL, ..., .progress = "none", .inform = FALSE,
.drop = TRUE, .parallel = FALSE, .paropts = NULL)

The key arguments are:

.data -the data frame to be processed
.variables —the variables to use when splitting the data frame
.fun —the function to apply to each piece after splitting

New variables can be created and named as part of this process.

This package uses the period function (. ()) to allow column names to be specified without having
to place them in quotation marks.

As an example, let's do the same calculation of species richness in each combination of soil group
and soil series:
library(plyr)
Oak.soil.sum <- ddply(.data = Oak,
.variables = .(SoilGroupName, SoilSeriesName),
.fun = summarize,
N = length(SppRich),
MinS = min(SppRich),
MeanS = round(mean(SppRich), 1),
MaxS = max(SppRich))
Oak.soil.sum

SoilGroupName SoilSeriesName N MinS MeanS MaxS
1 Alluvial Amity 3 32 38.0 44
2 Basic.igneous Dixonville 5 27 38.4 61
3 Basic.igneous Nekia 4 32 39.0 51
4 Basic.igneous Olympia 2 28 31.0 34
5 Sedimentary Carlton 6 23 29.2 35
6 Sedimentary Peavine 5 33 37.4 41
7 Sedimentary Steiwer 22 16 33.3 51

This object is identical to that produced via piping, except that it is saved as an object of class
‘data.frame’ instead of class ‘tibble’.

Of course, this like all other code can be streamlined by omitting the argument names if the
arguments are called in order:

Oak.soil.sum <- ddply(Oak, .(SoilGroupName, SoilSeriesName), summarize,
N = length(SppRich),

37 | R Basics

MinS = min(SppRich),

MeanS = round(mean(SppRich), 1),
MaxS = max(SppRich))
Oak.soil.sum

merge ()

An essential function to be familiar with when you want to combine objects ismerge (), which allows
you to combine two objects on the basis of one or more specified columns. This is a base R function.
Its usage is:

merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by, all
FALSE, all.x = all, all.y = all, sort = TRUE, suffixes = c(".x",".y"), no.dups =
TRUE, incomparables = NULL, ...)

The key arguments are:

x, y — the data frames to be combined. Note that if you want to only include certain columns
from a data frame you can index them here. Be sure, however, that you index it to include both
the column(s) that form the basis for merging (needed for the by argument) and the column(s)
that you want to include in the resulting object.

by, by.x, by.y —the columns to use as the basis for merging. If the columns have the same
name, you can use the by argument. If the column names differ between objects, specify the
relevant columns via by.x and by.y. Merging can also be done on the basis of row names by
setting any of these equal to "row.names".

all,all.x, all.y —-whether toinclude rows that do not have a match in the other object. As
for the by argument, the all argument keeps all rows from both objects while all.x only
keeps those from x and all.y only keeps those from y. The default (all = FALSE) is to keep
only those rows that are present in both objects.

suffixes —text to append to the end of column names when column(s) with the same name
occur in both data frames but are not part of the criteria for merging. Sometimes it is helpful to
change the defaults so that column names from one data frame are unchanged after merging
and thus still work with your previous code. For example, to keep column names

from x unchanged while distinguishing those from y, we could set suffixes = c("",".y").

As an example, let's associate the mean species richness values for each soil group and soil series
(calculated above) with the individual observations:
Oak$Stand <- row.names (0Oak)
Oak.new <- merge(
x = Oak[, c("SoilGroupName", "SoilSeriesName", "Stand", "SppRich") 1],
by = c("SoilGroupName", "SoilSeriesName"),
all = TRUE,
y = Oak.soil.sum[, c("SoilGroupName", "SoilSeriesName", "MeanS")])

Some notes about this code:

| indexed x and y to only include the variables being used for merging and the variables that |
wanted to keep in the new object (0ak.new). If | did not do this, then all of the columns from

both objects would have been retained.
| was able to use the by argument (rather than by.x and by.y) because the columns forming

the basis of the merge had the same name in both objects.
When these objects do not contain the exact same set of observations, the all argument and

its variations are important. In this case, every observation was present in both objects.

R Basics | 38

Viewing the first few rows of output:
head(Oak.new)

SoilGroupName SoilSeriesName Stand SppRich MeanS

1 Alluvial Amity StandO1l 32 38.0
2 Alluvial Amity Stand46 38 38.0
3 Alluvial Amity Stand44 44 38.0
4 Basic.igneous Dixonville Stand42 33 38.4
5 Basic.igneous Dixonville Stand4l 38 38.4
6 Basic.igneous Dixonville Standl2 33 38.4

One very helpful way to diagnose functions like this is to keep track of the dimensionality of the
starting and ending objects. Here, we began with a 47 x 4 object (four columns from 0ak) and a 7 x
3 object (3 columns from Oak.soil.sum), and ended with a 47 x 5 object — the number of columns
increased by one because we used two columns to index the two objects and added a single
column of data. The number of rows didn't change because every observation from 0oak matched

an observation from Oak.soil.sum

Merging can also be applied within piping — the value that is fed into merge () is assumed to belong
to the first argument (x). I'll illustrate this by doing the same calculations as above while also using
some additional tidyverse functions:

Oak.new <- Oak %>%
mutate(Stand = row.names(Oak)) %>%
dplyr::select(SoilGroupName, SoilSeriesName, Stand, SppRich) %>%
merge(by = c("SoilGroupName", "SoilSeriesName"),
all = TRUE,
y = Oak.soil.sum[, c("SoilGroupName", "SoilSeriesName", "MeanS")])

Verify that the resulting object is the same.

The dplyr package also includes a family of functions to join (merge) objects:

inner join(x, y):onlyinclude observationsthat match in both xandy.

left join(x, y):include all observations of x regardless of whether they matchy. xis
assumed to be your primary table, so this is the most commmonly used join. If a row doesn't
match, the new variables are filled in with missing values.

right join(x, y):include all observations of y regardless of whether they match x. If a row
doesn't match, the new variables are filled in with missing values.

full join(x, y):include all observations of x and of y. If a row doesn’'t match, the new
variables are filled in with missing values.

More information on these and other “two-table verbs” is available at https:/dplyr.tidyverse.org/
articles/two-table.html.

Conclusions

Understanding how to name and manipulate objects in R is foundational for all other aspects of this
course. Much of the debugging that inevitably occurs during coding relates to how data are being
manipulated.

39 | R Basics

References

Adler, J. 2010. R in a nutshell: a desktop quick reference. O'Reilly, Sebastopol, CA.

Borcard, D., F. Gillet, and P. Legendre. 2018. Numerical ecology with R. 2nd edition. Springer, New
York, NY.

Cetinkaya-Rundel, M. 2023. Teaching the tidyverse in 2023. https://www.tidyverse.org/blog/2023/08/
teach-tidyverse-23/

Crawley, M.J. 2012. The R book. Second edition (First edition, 2007). Wiley, West Sussex, England.

Dalgaard, P. 2008. Introductory statistics with R. Second edition (First edition, 2002). Springer, New
York, NY.

Filazzola, A., and C.J. Lortie. 2022. A call for clean code to effectively communicate science. Methods
in Ecology and Evolution 13:2119-2128.

Manly, B.F.J.,,and J.A. Navarro Alberto. 2017. Multivariate statistical methods: a primer. Fourth edition.
CRC Press, Boca Raton, FL.

Paradis, E. 2005. R for beginners. Université Montpellier I, Montpellier, France. http://cran.r-
project.org/doc/contrib/Paradis-rdebuts_en.pdf

Robinson, A. 2016. icebreakeR. https://cran.rstudio.com/doc/contrib/Robinson-icebreaker.pdf
Sellors, M. 2019. Field guide to the R ecosystem. http://fg2re.sellorm.com/

Torfs, P, and C. Brauer. 2014. A (very) short introduction to R. http://cran.r-project.org/doc/contrib/
Torfs+Brauer-Short-R-Intro.pdf

Venables, W.N, D.M. Smith, and the R Development Core Team. 2023. An introduction to R. Version
4.3.2. http://cran.r-project.org/doc/manuals/R-intro.pdf

Wickham, H. 2011. The split-apply-combine strategy for data analysis. Journal of Statistical Software
40:1-29. http://www.jstatsoft.org/v40/i01/.

Wickham, H. 2014. Advanced R. Chapman & Hall/CRC, Boca Raton, FL.
Wickham, H. 2020. The tidyverse style guide. https://style tidyverse.org/

Wickham, H., and G. Grolemund. 2017. R for data science: import, tidy, transform, visualize, and
model data. O'Reilly, Sebastopol, CA. http://r4ds.had.co.nz/

Zuur, AFF.,, E.N.leno,and C.S. Elphick. 2010. A protocol for data exploration to avoid common statistical
problems. Methods in Ecology and Evolution 1:3-14.

Media Attributions

drainage.unordered
- drainage.ordered
- tidyverse
- tidyverse_packages © Cetinkaya-Rundel

R Basics | 40

5. Data Adjustments

Learning Objectives

To present ways to identify data entry errors.
To consider when and how to script temporary data adjustments.
To begin considering how data adjustments relate to the research questions being addressed.

To continue using R, including functions to adjust data.

Readings

Broman & Woo (2018)

Key Packages

require(tidyverse, labdsv)

Properties of Multivariate Ecological Data

Many ecological studies collect data about multiple variables on the same sample units. Manly &
Navarro Alberto (2017, ch. 1) provide several examples of multivariate datasets. Types of data that
have been the foci of analyses in this course include:

Physiology: gas exchange, photosynthesis, respiration, stomatal conductance

Plant ecology: abundances of multiple species

Fire ecology: tree mortality, scorch height, fuel consumption, maximum temperature
Remote sensing: height of LIiDAR returns, canopy density, rumple

Anatomy: morphometric measurements

Bioinformatics / genomics: genetic sequence data

41 | Data Adjustments

Since these data are collected on the same units, they are multivariate. However, they often have
many properties that confound conventional multivariate analyses:

Bulky - large number of elements in a matrix

Intercorrelated / redundant - for example, species often respond to the same gradients, and
LiDAR-derived metrics may be highly correlated with one another

Outliers - non-normal distributions. For example, species composition data is notorious for
having lots of zeroes (i.e,, species absent from plots)

Given these properties, it is often necessary to adjust data prior to analysis. McCune (2011) provides
a decision tree that summarizes multiple options for data adjustment and for analyses. Other
suggestions are provided in an appendix to these notes.

Data Organization (redux)

As discussed in the context of reproducible research, scripting is a powerful ability that distinguishes
R from point-and-click statistical software. When a script is clearly written, it is easy to re-run an
analysis as desired — for example, after a data entry error is fixed or on a particular subset of the data.

Once your data have been entered and corrected, all subsequent steps should be automated in
a script. This often requires data manipulation, such as combining data from various subplots, or
calculating averages across levels of a factor. New R users often want to export their data to Excel,
manipulate it there, and re-import it into R. Resist this urge. Working in R helps you avoid errors
that can creep in in Excel —such as calculating an average over the wrong range of cells—and that are
extremely difficult to detect. If tempted to export your data file to Excel so that you can re-organize
or summarize it, | encourage you to first check out the R help files (including on-line resources), ask
colleagues how they solve similar issues, and consult resources like Wickham & Grolemund (2017).
Packages like dplyr and tidyr are particularly helpful for these types of tasks.

The general principle is to maintain a single master data file. Obvious errors should be permanently
corrected in this master data file, but other changes may be context dependent. Scripting these
context-dependent changes enables you to:

work from the same raw data every time
avoid having multiple versions of your data file

Broman & Woo (2018) provide many valuable suggestions for organizing data within spreadsheets.

By convention, multivariate data are organized in a matrix where each row is a unique sample unit
and each column is a unique variable. This is consistent with the ‘tidy data' philosophy within the
tidyverse:

Each variable is its own column. | often refer to the columns as ‘species’ for simplicity, but they
might be measured values or assigned values such as plot ID, year, experimental treatment etc.
Each sample unit is its own row. | often refer to the rows as ‘plots’ for simplicity, but they might
be stands or plot-year combinations (i.e., a measurement of a given plot at a point in time) or
other units of observation. The units will depend on the study system, but it is essential that
each row be uniquely identified.

This structure for organizing data is called the ‘wide’ format in tidyr. In practice, data are
sometimes stored in a ‘long’ or triplet form where one column identifies the sample unit, one
column identifies the variable, and one column identifies the value of that variable in that sample
unit. These organizational structures are related, as illustrated in the below figure.

Data Adjustments | 42

0.7K = 2K 0.7K
B 37K | 80K 37K
C 212K (213K 212K

2000 [ITS
2000 6T
ol 2000 [=XE

Comparison of the ‘wide’and ‘long’ (or triplet) structures for organizing data. In this
case, the countries are sample units and the years (1999, 2000) are the variables.
From Posit (2023).

wrOw>

The tidyr package includes the pivot wider () function to convert data from long to wide
format, and the pivot longer () function to convert from wide to long format.
Triplet form can be a particularly efficient way to store compositional data as many species are often

absent from most sample units. If all non-zero values are included in the triplet form, the zeroes can
be inferred and automatically added when data are converted to wide format.

Data Organization

Store data in master data files, with sample units as rows and variables as columns. Each row should
have a unique identifier, and each column should contain a single variable.

Describe the rows and columns of the master data file in a metadata document.

Ideally, prepare a single master data file for data collected at each spatial scale. Apply unique
identifiers consistently across data files so they can be merged within R.

Identify and Permanently Correct Data Entry Errors

| am assuming here that the data we are using are organized in one or more spreadsheets; Broman
& Woo (2018) provide valuable ideas on how to do so.

It may seem self-evident, but it's important to check for and correct data errors before proceeding to
analysis. Data cleaning can be more time-consuming than the actual analyses that follow (de Jonge
& van der Loo 2013). Although | rely exclusively on R once I'm ready for analysis, | generally do this
initial type of quality control in Excel (via Pivot Tables, etc.) before importing data into R. However,
de Jonge & van der Loo (2013) provide detailed notes about how to explore and clean up data within
R. Zuur et al. (2010) provide very helpful suggestions for data exploration.

Ways to identify data entry errors include:

43 | Data Adjustments

Recheck the data entry on a randomly selected subset of the data. This can be done by
yourself or by having someone read the data back to you.

Decide how to deal with missing data. See suggestions of McCune & Grace (2002, p. 58-59) and
de Jonge & van der Loo (2014, ch. 3).

Examine the minimum and maximum values to verify that they span the permitted range of
values.

If dealing with a categorical variable, view the unique values recorded and make sure they are
all appropriate. Watch out for seemingly minor differences:

> A plot with a topographic position of ‘slope’ will be assigned to a different category than
one with a position of ‘Slope’ (note the capital!).
o Similarly, ‘slope’ and ‘slope ‘ would be treated as two different values because of the space
in the latter.
Plot reasonably correlated variables against one another to identify potential bivariate outliers.
These might reflect data entry errors, though they may also be true outliers (see below).
Anomalies can also sometimes be detected by calculating the ratio of two variables (e.g., tree
height and diameter) and then looking at the extreme values in the distribution of this ratio.
This technique is less appropriate for community data than for other types of data (e.g.,
environmental variables that are correlated with one another).
If you are dealing with compositional data, resolve unknowns and assign each unknown
species to a unique species code. Be sure to keep track of what you've done — you may
encounter that unknown code again elsewhere! It is often helpful to save two species codes for
each entry: one for the original field code, and one for the code to be analyzed.

In spite of our best efforts at quality control, errors sometimes slip through. This is where scripts
really shine. If you have kept careful track of the steps in your analysis (see the ‘Reproducible
Research’ chapter), once you have corrected these errors you will be able to easily re-do your
analyses, re-create graphics, etc. simply by re-running the script.

Related to this is the issue of detecting outliers. Univariate outliers are relatively easy to detect.
However, we have already noted that community ecology data are often non-normally distributed -
in particular, there is usually a plethora of zeros (absences) in a site x species matrix. These might
appear to be outliers statistically, but they aren’t outliers biologically and shouldn’t be treated as
such!

Multivariate outliers are much more difficult to detect. One way to do so is to compare the range of
dissimilarities among elements. See here for more detail.

An interesting non-R option for cleaning up messy data is OpenRefine (https://openrefine.org/). |
have not used this website, however, so cannot speak to its effectiveness.

Scripted (Temporary) Data Adjustments

Often we may want to adjust the data for an analysis but do not want to permanently change
the original data file. We will consider three types of temporary adjustments here: consolidating
taxonomy, deleting sample units, and deleting rare species. These types of adjustments are often
required for compositional analyses but may be less common for other types of multivariate data.

Scripted Adjustments to Data

Data Adjustments | 44

Scripts provide a means of adjusting the data for an analysis without permanently changing the
original data file. Examples of these adjustments include:

Consolidating taxonomy

Deleting sample units (rows) — either because they are empty or to focus on a subset of them
Deleting species (columns) because they are absent from the focal sample units or are rare and
assumed to contribute little to the patterns among sample units

Your analytical methods should clearly identify whether and which adjustments were made.

Consolidating Taxonomy

It can be difficult to identify the taxa present in an ecological study, and people vary in their
taxonomic proficiency. In one study (Morrison et al. 2020), more than half of the apparent differences
in cover of plant species over time were identified as observer errors! As another example, | analyzed
compositional variation in grasslands around the world (Bakker et al. 2023). Each site has multiple
plots, and each plot was assessed in multiple years. As part of my quality control, | reviewed which
species were identified within each site and year and highlighted inconsistencies that likely reflect
the person doing the work (as in the example below) rather than actual ecological changes. My
analysis includes scripted adjustments to taxonomy at 70% of the 60 sites in the analysis, indicating
that this is not a rare scenario.

Consider the following example of species composition in two plots in two years:

Year Plot Poa compressa Poa pratensis Poa spp.

1 i 1 3
1 i 2 2
2 i
2 ii

This might happen, for example, if the person who assessed composition in year 2 was less confident
in their ability to distinguish the two Poa spp. than the person who assessed composition in year 1.

Analyses that focus just on Year 1 would likely want to include the fact that two species of Poa were
documented that year. For example, these species might respond differently to environmental
conditions or to experimental factors.

What about comparisons between Years 1 and 2? As reported here, each plot has lost two species
(Poa compressa and P. pratensis were present in Year 1 but absent in Year 2) and gained one species
(Poa spp.). However, it should be clear that these are differences in taxonomic resolution rather than
meaningful ecological changes. Instead, it would be reasonable to combine P. compressa and P.
pratensis for analyses that compare the years. This can be easily scripted:

Add the covers of P. compressa, P. pratensis, and Poa spp., and assign the summed cover to a
column with a new taxonomic code, such as ‘Poa_combined'.
Delete the columns for P. compressa, P. pratensis, and Poa spp.

45 | Data Adjustments

To run this in R, we'll first create our dataset and then use the mutate() function from the
tidyverse. Of course, there are many other ways that this could also be scripted.

poa_example <- data.frame(

Year = ¢(1, 1, 2, 2),

Plot c("i", "i", "ii", "ii"),
Poa_compressa = c¢(1, 2, 0, 0),
Poa_pratensis = c¢(3, 2, 0, 0),
Poa_spp = c(0, 0, 4, 4))

library(tidyverse)

poa_adjusted <- poa_example %>%
mutate(Poa_combined = Poa_pratensis + Poa_ compressa + Poa_ spp,
.keep = "unused")

Year Plot Poa_combined

1 1 i 4
2 1 i 4
3 2 ii 4
4 2 ii 4

Note that the abundance of ‘Poa_combined’ is identical in all plots and years of this simple example;
this was not obvious from the original data.

Deleting Sample Units (Rows)

With some types of ecological data, it is possible for sample units to be empty — for example, there
might be no species growing in a vegetation plot. While this information is ecologically relevant,
many analytical techniques require that every row of the matrix contain at least one non-zero value.
There are two common ways to deal with empty sample units:

Delete empty sample units from the analysis. This is not ideal for several reasons:

o |t reduces the size of the dataset and can alter the balance of our design.

o |t changes the questions being asked. For example, imagine that we assessed plots in two
habitats, and that many of the sample units in one of the habitats were empty. Using all of
the sample units, we can ask whether composition differs between habitats. Using only
those sample units that contain species, we can ask whether composition differs between
habitats given that we are only considering areas that contain species.

Add a dummy variable with a small value to all sample units (Clarke et al. 2006). Doing so
means that all sample units have at least one non-zero variable, permitting their inclusion in
analyses that require data in all rows. [I'll illustrate this approach in the chapter about distance
measures.

If data are stored in multiple objects, such as when response variables are in one object and potential
explanatory variables are in another, we need to apply changes to both objects. If we delete a
sample unit (row) from one object, we also need to remove that sample unit from the other object.
And, of course we need to make sure that the remaining sample units are in the same order in both
objects.

Another reason to delete sample units is to focus on a subset of the data for a particular analysis.

Data Adjustments | 46

The filter () function from the tidyverse is very useful here. For example, if we wanted to focus
on Year 1from poa_example above:

poa_example %>% filter(Year == 1)

Year Plot Poa pratensis Poa compressa Poa_spp
1 1 i 1 3 0
2 1 i 2 2 0

Deleting Species (Columns)

Sometimes a dataset includes columns that are empty. For example, this often happens with
compositional data if you've filtered the data to focus on a subset of the sample units; some species
were never recorded in the subset that you're focusing on. These ‘empty’ species are less of a
computational concern than empty sample units, though relativizations that are applied to columns
(see ‘Relativizations' chapter) can produce ‘NaN’ values if applied to empty columns. It is also
computationally inefficient to include a large number of empty columns, though computing power
is no longer a significant consideration for most analyses. We can delete these empty columns
before proceeding with analyses.

A more intriguing instance can arise with compositional data: some people suggest that we delete
rare species. It may seem counter-intuitive to ignore these species, but the logic is that rare species
are often poorly sampled and therefore contribute little information about the relationship with
environmental gradients, etc. (| suspect that concerns about computing power were also a factor in
developing this recommendation, but are no longer relevant).

When is a species rare? A cutoff of 5% of sample units is often adopted. So, if a dataset contains
20 sample units, the 5% rule indicates that species that only occur in a single sample unit should be
deleted. If a dataset contains 40 sample units, species that occur in one or two sample units would
be deleted.

When data have been collected in distinct areas (e.g., experimental treatments), deletion could
occur on the basis of the full dataset (i.e.,, species that occur on < 5% of all sample units) or on
individual treatments (i.e., species that occur on < 5% of the sample units in a given treatment).
Generally, however, sample sizes are too low for the latter approach to be meaningful.

Surprisingly few studies have examined the effect of removing rare species. Cao et al. (2001) noted
that consideration of the dominant species often provides insight into major environmental
gradients, and concluded that “the theoretical or empirical justification for deleting rare species in
bioassessment is weak”. Poos & Jackson (2012) used electrofishing to sample the fish community at
each of 75 sites in a watershed. They analyzed these data after making four types of adjustments:
i) using the full dataset (no species removed), ii) removing species occurring at a single site, iii)
removing those occurring at less than 5% of sites, and iv) removing those occurring at less than 10%
of sites. The effect of these removals was compared with the effects of choice of distance measure
and choice of ordination method, both of which we'll discuss later. They concluded that removal of
rare species had about as large an effect on the conclusions as did the choice of ordination method.
Brasil et al. (2020) examined how the compositional variation within fish and insect communities
was affected by systematically removing rare or common species (though they defined rarity by
abundance rather than by the number of sample units in which a species was present). They
concluded that the proportion of compositional variation that could not be explained by their
explanatory variables — aka the residual variation — was minimally affected even by the removal of
half of the species. This was especially true if variation was expressed on the basis of abundance
rather than presence. Further examination of this topic is clearly warranted (anyone want to include

47 | Data Adjustments

this in their project?). As a counter to this focus on rare species, Avolio et al. (2019) provide a nice
consideration of the importance and identification of dominant species.

There is no requirement that rare species be removed from a community ecology study; it is up to
you to decide whether to do so or not. Of course, you should clearly state whether you did, why, and
what your minimum rarity threshold was.

Please note that the above considerations are not applicable in all circumstances. Rarity in this
context refers to sample units where a species was not detected. If your response variables are
not species, then your data may contain values for all sample units. And, even if there are some
rare ‘species’, it may not make sense to remove them. For example, if your response variables were
measures of burn severity, it likely would make sense to retain all burn severities even if they were
not detected in your particular study.

Finally, bioinformatics studies include pipelines that include pre-processing steps which can

effectively remove species from a dataset, particularly for speciose systems such as microbial
systems (Zhan et al. 2014).

Application in R
Rare species (response variables; columns) can be removed manually, but it is easier to use an

existing function. We'll illustrate this using our sample dataset.

After opening your R project, load the sample dataset:

Oak <- read.csv("data/Oak data_47x216.csv", header = TRUE, row.names = 1)

Oak species <- read.csv("data/Oak_species 189x5.csv", header = TRUE)

Create separate objects for the response and explanatory data:
Oak_abund <- Oak[, colnames(Oak) %in% Oak species$SpeciesCode]

Oak_explan <- Oak[, ! colnames(Oak) %in% Oak_species$SpeciesCode]

See the ‘Loading Data’ chapter if you do not understand what these actions accomplished.

Oak_abund contains species abundance data for 189 species encountered on the 47 stands.
Therefore, a 5% cutoff (47 x 0.05 = 2.35) means deleting species that occur in less than 3 stands.

labdsv: :vegtab ()

This function eliminates rare species and re-orders the columns and/or rows in a data frame. The
help file for this function shows its usage:
vegtab(comm, set, minval = 1, pltord, spcord, pltlbl, trans = FALSE)

The key arguments are:

comm — the data frame containing the data to be analyzed

minval —the minimum number of observations that a variable has to occur to be retained. The
default is 1 observation (i.e.,, empty variables — those without any occurrences — are deleted)
pltord —a numeric vector specifying the order of rows in the output

spcord — a humeric vector specifying the order of columns in the output

To use this function, we need to specify the dataframe (comm argument) and the minimum number

Data Adjustments | 48

of observations (minval argument). Since we are not seeking to re-order our dataframe, we do not
need to specify the pltord or spcord arguments.
Oak no raw <- vegtab(comm = Oak abund, minval = (0.05 * nrow(Oak_abund)))

Note how | set minval equal to 5% of the number of samples, without specifying how many samples
there were. This approach provides flexibility as it remains correct even if the number of rows in the
dataset changes. If | didn't need this flexibility, | could equivalently have hard-coded the minimum
number of observations (minval = 3).

How many species are in the reduced dataset?
How many species were in the original dataset?
How many species were removed?

For clarity, | named each argument explicitly in the above code. If we list the arguments in the order
specified by a function’s usage, we can omit the argument names. Or, we can just use a smaller
unigue portion of the argument name and let R match it against the arguments to figure out which
one we mean:

Oak_no raw <- vegtab(Oak_abund, min = (0.05 * nrow(Oak abund)))

While these usages are more compact, they can be frustrating if you have to figure out later which
arguments are being used. | specify arguments by name to avoid this.

Once you've removed rare species, you may have to check again for empty sample units.

Concluding Thoughts

Decisions about how to adjust data — including whether to consolidate taxonomy, focus on a subset
of the sample units, and to delete rare species — can strongly affect the conclusions of subsequent
analyses.

Empty sample units and rare species should never be deleted when analyzing species richness
or diversity. In these calculations, the rare species are of critical importance, and a sample unit
containing no species will affect the mean species richness, the slope of a species-area curve, etc.
This is another reason to script these adjustments and preserve the original data.

References

Avolio, M.L,, E.J. Forrestel, C.C. Chang, K.J. La Pierre, KT. Burghardt, and M.D. Smith. 2019.
Demystifying dominant species. New Phytologist 223:1106-1126.

Bakker, J.D., J.N. Price, J.A. Henning, E.E. Batzer, T.J. Ohlert, C.E. Wainwright, P.B. Adler, J. Alberti,
C.A. Arnillas, L.A. Biederman, E.T. Borer, L.A. Brudvig, Y.M. Buckley, M.N. Bugalho, M\W. Cadotte,
M.C. Caldeira, J.A. Catford, Q. Chen, M.J. Crawley, P. Daleo, C.R. Dickman, I. Donohue, M.E. DuPre, A.
Ebeling, N. Eisenhauer, P.A. Fay, D.S. Gruner, S. Haider, Y. Hautier, A. Jentsch, K. Kirkman, J.M.H. Knops,
L.S. Lannes, A.S. MacDougall, R.L. McCulley, R.M. Mitchell, J.L. Moore, J.W. Morgan, B. Mortensen, H.
Olde Venterink, P.L. Peri, S.A. Power, S.M. Prober, C. Roscher, M. Sankaran, E.W. Seabloom, M.D. Smith,
C. Stevens, L.L. Sullivan, M. Tedder, G.F. Veen, R. Virtanen, and G.M. Wardle. 2023. Compositional
variation in grassland plant commmunities. Ecosphere 14(6):e4542. https://doi.org/10.1002/ecs2.4542.

Brasil, L.S., T.B. Vieira, A.F.A. Andrade, R.C. Bastos, L.F.d.A. Montag, and L. Juen. 2020. The importance
of common and the irrelevance of rare species for partition the variation of community matrix:

49 | Data Adjustments

implications for sampling and conservation. Scientific Reports 10:1977. Doi: 10.1038/
s41598-020-76833-5

Broman, KW., and K.H. Woo. 2018. Data organization in spreadsheets. The American Statistician
72:2-10. D0i:10.1080/00031305.2017.1375989

Cao, V., D.P. Larsen, and R.St-J. Thorne. 2001. Rare species in multivariate analysis for bioassessment:
some considerations. Journal of the North American Benthological Society 20:144-153.

Clarke, KR., P.J. Somerfield, and M.G. Chapman. 2006. On resemblance measures for ecological
studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded
assemblages. Journal of Experimental Marine Biology and Ecology 330:55-80.

de Jonge, E., and M. van der Loo. 2013. An introduction to data cleaning with R. Statistics
Netherlands, The Hague, Netherlands. 53 p. http://cran.r-project.org/doc/contrib/
de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf

Manly, B.F.J.,and J.A. Navarro Alberto. 2017. Multivariate statistical methods: a primer. Fourth edition.
CRC Press, Boca Raton, FL.

McCune, B. 2011. A decision tree for community analysis [poster]. MjM Software Design, Gleneden
Beach, OR.

McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. MjM Software Design,
Gleneden Beach, OR.

Morrison, LW., S.A. Leis, and M.D. DeBacker. 2020. Interobserver error in grassland vegetation
surveys: sources and implications. Journal of Plant Ecology 13(5):641-648.

Poos, M.S, and D.A. Jackson. 2012. Addressing the removal of rare species in multivariate
bicassessments: the impact of methodological choices. Ecological Indicators 18:82-90.

Posit. 2023. Data tidying with tidyr :: cheatsheet. https://rstudio.github.io/cheatsheets/tidyr.pdf

Wickham, H., and G. Grolemund. 2017. R for data science: import, tidy, transform, visualize, and
model data. O'Reilly Media, Sebastopol, CA. http://r4ds.had.co.nz/

Zhan, A, W. Xiong, S. He, and H.J. Maclsaac. 2014. Influence of artifact removal on rare species
recovery in natural complex communities using high-throughput sequencing. PLoS ONE
9(5):96928.

Zuur, AFF., E.N.leno,and C.S. Elphick. 2010. A protocol for data exploration to avoid common statistical
problems. Methods in Ecology and Evolution 1:3-14.

Media Attributions

long.v.wide.table.format

Data Adjustments | 50

6. Transformations

Learning Objectives

To consider how transformations relate to the research questions being addressed.

To illustrate how to transform data in R.

Monotonic Transformations

Monotonic transformations are applied identically to all data elements. This means that the action
taken on an individual element is unchanged whether you consider it alone or as part of a set. For
example, calculating the square root of a value is unaffected by whether that value is part of a set.
This is contrasted with relativizations, where the result of the action depends on other elements in
the set.

There are many potential transformations that can be applied to data; we will review the most
common ones here. McCune & Grace (2002, p. 67) note that transformations can be conducted
for statistical or ecological reasons. However, many of the techniques we will cover do not require
normality and other assumptions of parametric technigques. Thus, we can focus our transformations
on the ecological questions that we seek to answer.

If you apply a transformation to univariate data such as an explanatory variable, the data should
generally be back-transformed to the original units for presentation — as is true for all types of
analyses.

Roots (square root, cube root, etc.)

Root transformations can be applied to count data, which generally follow a Poisson distribution.
Vegetation work rarely uses higher-order roots, but studies in other systems do. For example,
marine benthic studies may include organisms from phyla that span several orders of magnitude
in abundance - there might be one starfish but tens of thousands of smaller invertebrates. Fourth-
root transformations are often applied to this type of data so that the numerically dominant smaller
taxa do not overwhelm comparisons among sample units.

Logarithms

Biomass or ratio data are often log-transformed. This commonly involves base-10 or natural
logarithms (make sure to note which you use!).

51 | Transformations

If your data include zeroes, you may need to add a small value to all data because you can't calculate
log(0). This can be done manually, or you can use an existing function such as loglp().

Arcsin-square root

The arcsin-square root transformation is used with proportional data such as percent cover. It
doesn’t work for negative values or values > 1.

Some authors strongly discourage using this transformation for univariate analyses (Warton & Hui
2011), but | have not seen this recommendation carried over to multivariate contexts.

Binary

A binary transformation converts continuous data to O or 1 based on whether a criterion is met.
This is often used to convert abundance data to presence/absence. Another example of this as
a transformation would be to evaluate whether abundance data exceed a static value such as ‘5
individuals' or ‘5% cover’.

Depending on the criterion, a binary adjustment can also be a type of relativization (see the
‘Relativizations’ chapter).

Transformations

Transformations are applied identically to all elements within an object.

Applications in R

In R, transformations are easily performed by applying a function to a matrix; the function is
automatically applied to every element in the matrix. The transformed data are generally assigned
to a new object so that the original data remain intact.

Here are the above transformations:

Transformations | 52

R Function Note

sgrt(x) orx”~(1/2) Square root of x

x™(1/4) Fourth root of x

logl0(x) Logarithm (base 10) of x
log(x) Natural logarithm of x
loglp(x) Natural logarithm of x + 1
asin(sqrt(x)) Arcsin square root of x
ifelse(x > 0, 1, 0) Convert x to presence/absence

Oak Plant Communities Example

Let's illustrate these transformations using our oak plant communities dataset. Begin by opening
the R project and the loading the data:

Oak <- read.csv("data/Oak_data 47x216.csv", header = TRUE, row.names = 1)
Oak_species <- read.csv("data/Oak_species_189x5.csv", header = TRUE)

Create separate objects for the response and explanatory data:
Oak_abund <- Oak[, colnames(0Oak) %in% Oak species$SpeciesCode]
Oak_explan <- Oak[, ! colnames(Oak) %in% Oak_species$SpeciesCode]

See the ‘Loading Data‘ chapter if you do not understand what these actions accomplished.

Transforming the Response Variables

Applying a transformation to an object automatically applies it to each element within the object.
Let's apply a square root transformation to our response variables:

Sqrt_Oak_abund <- sqgrt(Oak_ abund)
Compare the two objects to verify that the data changed as intended.

The corresponding value in Sgrt_Oak_abund of any value in 0Oak_abund can be calculated using the
function that we applied to the object - this is one way to see that this was a transformation rather
than a relativization.

Transforming Explanatory Variables

There are many types of explanatory variables — continuously distributed predictors, experimental
factors, etc. If therefore would generally not make sense to apply the same transformation to a
matrix of explanatory variables.

It does make sense to transform individual variables. Each explanatory variable can be evaluated
separately to determine which type of transformation, if any, is appropriate.

Let's transform the number of large oak trees. This is a count, so we'll use a log transformation:

53 | Transformations

Oak_explan$log Quga <- logl0(Oak_explan$Quga.gt60cm + 1)

| added one to all values to account for the possibility that a stand may not have had any large ocak
trees.

In fact, this variable is already present in the data frame as the variable ‘LogQuga.gt60cm’. Compare
these two variables to verify that our calculation was done correctly. The existing variable is reported
to two decimal places so we'll round our variable the same:

Oak_explan$log Quga <- round(Oak_explan$log Quga, 2)
rownames (Oak explan[which(Oak explan$log Quga != Oak explan$LogQuga.gt60cm),])

Verify the outcome of the above comparison by changing from a test for inequality (!=) to a test for
equality (==).

Concluding Thoughts

Decisions about whether and how to transform the data can strongly affect the conclusions of
subsequent analyses. Most of the techniques that we are using in this course make minimal
statistical assumptions, which means that adjustments do not have to be made for statistical
reasons but rather can focus on the ecological questions of interest.

Transformations can be applied to both response variables and explanatory variables. Response
variables are often transformed en masse, while explanatory variables are transformed individually.
Each explanatory variable can be evaluated separately to determine which type of transformation, if
any, is appropriate.

Transformations should be scripted rather than permanently changing the raw data file. Scripting
ensures flexibility to try other adjustments, skip them entirely, etc.

The transformations that have been discussed here are for continuously distributed variables. For
categorical explanatory variables, other actions may be required such as combining similar
categories together or restricting analyses to focus on a subset of the categories. These decisions
should be based on the objectives of the analysis and the ecological questions that you seek to
answer.

References

McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. MjM Software Design,
Gleneden Beach, OR.

Warton, D.l, and F.K. Hui. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology
92:3-10.

Transformations | 54

7. Relativizations

Learning Objectives

To consider how relativizations / standardizations relate to the research questions being addressed.

To illustrate how to relativize data in R.

Readings

Fox (2013 blogpost)

Key Packages

require(vegan)

Relativizations / Standardizations

A relativization or standardization is a transformation that is affected by other elements in the
matrix. Another way to think of this is that the action taken on an individual element would be
different if you consider it alone or as part of a set of elements.

Relativizations can be applied to rows (sample units), columns (variables), or both. For example,
relativizing a data frame by columns will mean that each element within a given column is adjusted
based on the values of other elements in that same column.

Relativizations can also be applied in series — for example, relativizing elements on a row-by-row
basis and then further relativizing those relativized elements on a column-by-column basis. See the
Wisconsin standardization below as one example of this.

Relativizations are particularly important in some situations:

To permit equitable comparisons when variables are measured in different units. For example,
the metadata of our sample dataset indicates that tree abundance is expressed as basal area

55 | Relativizations

(ftz/acre) whereas the abundance of other taxa is expressed as percent cover. Furthermore,
note that basal area has no upper bound whereas percent cover cannot exceed 100% for a
species. It therefore would not make sense to directly compare the absolute abundance of a
tree species to the absolute abundance of another type of species.

To permit equitable comparisons when variables are expressed on different scales. Imagine a
study in which the heights of trees and grasses were measured. The trees might be measured
in m and the grasses in cm. Simply expressing them on the same scale (e.g., cm) would mean
that the much larger numerical values for trees would overwhelm the smaller value for grasses.
To explore questions about relative differences, as described below.

The relativizations described below are often based on a single variable, but another approach is to
relativize on the basis of another variable. For example, in wildlife studies abundance is commonly
divided by sampling effort to account for differences in sampling effort (Hopkins & Kennedy 2004).
This was also evident in the medical trial reported below, where the number of cases was expressed
per 10,000 women.

We'll talk about distance measures soon, but for now I'll note that some are based on absolute
differences between sample units and others on relative differences between sample units. Many
distance measures based on absolute differences become mathematically equivalent following
relativization.

Relativizations

Relativizations are conditional: the change in one element depends on which other elements are
present in the object.

Theory

Analyses based on absolute values and on relative values address different questions. Imagine a
study in which you capture and count the animals in an area. What hypotheses might be tested if
you analyze the number of raccoons captured (an absolute value)? What about if you analyze the
proportion of all animals captured that were raccoons (a relative value)?

The below image nicely illustrates the ways that absolute and relative effects can relate to one
another, including that one effect can be a cost (negative) while the other is a benefit (positive)!

Relativizations | 56

Absolute cost MNo absolute effect Absolute benefit
(A) (B) (C)
Relative cost _— | -
W, - _,_,--""'_F
(D) (E) (F)
No relative i
effect e I s
(G) (H)]
Relative . R
benefit s e e
Before After Before After Before After

Figure 1. Schematic presentation of the performance (W) of a plant before and after a given period of time, in which the
plant either stayed emergent (E) or went into vegetative dormancy (D). The environment is assumed to be constant. An
absolute benefit or cost of dormancy refers to an increase or decrease, respectively, in plant performance after dormancy
compared to the initial state. A relative benefit or cost refers respectively to improved or decreased performance of a plant
following dormancy as compared to a scenario in which it stays emargent (see also Supporting Information part 1), Panels
A-] present the nine possible combinations of the presence and direction of the absolute and relative effects of dormancy;
A, dormancy has both absolute and relative costs; B, dormancy has relative cost, but no absolute effect; C, dormancy has
absolute benefit but relative cost;), dormancy has an absalute cost, but no relative effect; E, 1|.|m'r|.|||.r_-.' has no absalute or
relative offeot; F, dormancy has an absolute beneht and no relative offect; G, dormancy has a relative benelit and no absoluts
effect; H, dormancy has absolute cost, but relative benefit and I, dormancy has both absalute and relative benefits.

Examples of how absolute and relative effects can have different expectations.
These examples are from a study of plants that were assessed before and after
they either stayed aboveground or went into dormancy. The combinations range
from dormancy having (A) a cost in both absolute and relative terms, (B) absolute
benefit but relative cost, (G) absolute cost but relative benefit, and (I) benefits in
both absolute and relative terms. From Hurskainen et al (2018).

Grace (1995) provides an example of how a dataset can be used to answer one set of questions
based on absolute values and another set of questions based on relative values (see Freckleton et al.
(2009) for more of this conversation). And, Fox (2013) provides some nice examples of the difference
between absolute and relative fitness.

The fact that absolute and relative values can answer different questions can be used to mislead. As
an example of the latter, Yates (2019) notes that medical trials commonly report positive outcomes
“in relative terms, to maximize their perceived benefit” but side effects “in absolute terms in an
attempt to minimize the appearance of their risk” (p. 133). He illustrates this with a study of a
breast cancer treatment, in which the drug reduced the occurrence of breast cancer but was
also associated with increased occurrence of uterine cancer. I've summarized the data below,
highlighting the statistics that were used to interpret the results. Can you see how this can be
misleading?

57 | Relativizations

Treatment Cases Per 10,000

Women
Breast Cancer Uterine
Cancer
Drug 133 23
Placebo 261 9
Relative Change due to Drug (difference between Drug and Placebo, -49% -

divided by Placebo)

How to decide what to do? As McCune & Grace (2002, p. 70) note, “there is no right or wrong
answer to the question of whether to relativize until one specifies the question and examines the
properties of the data”.

Absolute and Relative Effects

Knowing the direction and magnitude of an absolute effect does not necessarily tell you the direction
and magnitude of a corresponding relative effect. It is possible for them to respond similarly, or for one
to be positive and the other to be neutral or negative.

Types of Relativizations

| summarize some common relativizations here.

Normalize (Adjust to Standard Deviate)

If variables are normally distributed, they can be standardized into Z-scores:

_%i-¥
- S

A

where Y; is the value of Yin the /™" sample unit, Y’ is the mean value of Y, and s is the standard
deviation of Y.

After normalization, the values for a variable are expressed in units of how many standard deviations
they are from the mean (negative if below the mean, positive if above the mean). As a result, this
relativization can permit equitable comparisons among variables even if they were measured in very
different units.

This is commonly applied to columns of normally-distributed data. This relativization is generally

not applied to species abundances but is very reasonable for other response variables and for some
explanatory variables.

Relativizations | 58

It rarely makes sense to apply this relativization to rows.

Relativize by Maximum

Set maximum value to 1 and calculate all other elements as a proportion between 0 and 1. This is
commonly applied to the columns (species) of a species abundance matrix or to other variables
where zero is a reasonable expectation for a minimum value.

When applied to species abundance data, this allows species to contribute equally to differences
between plots. Assuming that two species were absent from some plots, and thus have zero as
their minimum, their relativized values will span the same range even if they differed greatly in
abundance.

Relativize by Range

Set maximum value to T and minimum value to O, and calculate all other elements as proportions
between these two values.

This relativization is similar to relativizing by maxima but is useful for variables that do not have zero
as the expected minimum value. For example, it would be more appropriate to relativize the latitude
of each plot (0ak$LatAppx or Oak_explan$LatAppx) by range than by maxima. Do you see why this
is the case? Try calculating and comparing the two approaches!

Adjust to Mean

Subtract row or column mean from each element. An element that was smaller than the mean will
produce a negative number, while an element that was larger than the mean will produce a positive
number.

This is the numerator of the Z-score calculation used to normalize data above. However, it does not
change the units in which variables are measured.

Binary

If binary decisions are made on the basis of a static value, such as ‘greater than zero', then they
are transformations as discussed in that chapter. However, if the threshold value depends on other
elements in the matrix, then a binary adjustment is a relativization. For example, one plausible
relativization is to set all values smaller than the median to O and all values larger than the median to
1. Since the median depends on other values in the matrix, the outcome for any element depends
on which other elements are included in the dataset.

Weight by Ubiquity / Relativize by Total

Calculate value in each element as a proportion of the total of all values.

59 | Relativizations

This is commonly applied to the rows (sample units) of a species abundance matrix. The resulting
data equalizes the contribution of plots: the relativized data sum to 1 for every plot regardless of how
much plots differed in total abundance. Note that it only makes sense to apply this to a set of values
where the sum of those values is meaningful.

Sometimes it makes sense to apply this to a subset of the variables. For example, if the explanatory
variables include depths of different soil horizons, you could relativize each horizon as a proportion
of the total soil depth.

It rarely makes sense to apply this relativization to columns. To do so, the sum of the values in the
column would have to be a meaningful value.

Common Relativizations

The most common relativizations are:

Relativizing each column by its maximum or range or, if normally distributed, by converting it to a
Z-score. These approaches equalize the importance of each column by accounting for differences
in unit, scale, etc.

Relativizing each row by its total. This equalizes the contribution of each row by adjusting for
differences in total.

Will Relativization Make a Difference?

McCune & Grace (2002, p.70) note that the degree of variability in row or column totals can be used
to assess whether relativization will have much of an effect. They are referring here to data that
have been measured in the same units for all variables (columns) in all sample units (rows). In other
words, it needs to make sense to compare row or column totals.

McCune & Grace express the degree of variability by the coefficient of variation (CV) of the row or
column totals. The CV is the ratio of the standard deviation of a variable to its mean, multiplied by
100 to express it as a percentage. They propose the following benchmarks:

CV (%) Magnitude

<50 Small

50-100 Moderate

100-300 Large

> 300 Very large
The predicted effect of relativization is directly related to the magnitude of the CV: relativization by
columns will have a greater effect if there is very large variation among the columns than if there is
small variation among them. However, please note that these are only rules of thumb. Depending

on your objectives, it may make sense to relativize even if the CV is small or to not relativize even if
the CVis very large.

Relativizations | 60

Row and column totals can be calculated using the rowSums () and colSums () functions. We can
use these to calculate the CV.

We'll illustrate this with our oak plant community dataset. To begin, we open the R project, load the
data, and create separate objects for the response and explanatory data:

Oak <- read.csv("data/Oak_data 47x216.csv", header = TRUE, row.names = 1)
Oak_species <- read.csv("data/Oak_species 189x5.csv", header = TRUE)
Oak_abund <- Oak[, colnames(0Oak) %in% Oak species$SpeciesCode]
Oak_explan <- Oak[, ! colnames(Oak) %in% Oak_species$SpeciesCode]

See the ‘Loading Data‘ chapter if you do not understand what these actions accomplished.

Now, let’s calculate the CV among row totals:
100 * sd(rowSums(Oak abund)) / mean(rowSums(Oak abund)) # CV of row (plot) totals

Aside: A Simple Function to Calculate Coefficient of
Variation

Note that we call rowSums (Oak_abund) twice in the above calculation of the CV. Adapting this for
a different variable can therefore be error prone - for example, if we want to apply it to columns
we might accidentally forget to change one of these calls to colSums (0Oak_abund). Importantly, the
code would still execute but the resulting numbers would be nonsensical.

An alternative is to create a function in which the repeated object is only specified once. To do so,
we will replace the repeated object by a single argument:
CV <- function(x) { 100 * sd(x) / mean(x) }

This provides an opportunity to highlight some basic points about writing functions:

Functions are created using the function() function, and are assigned to an object name —in
this case, ‘CV".

The function() function should include any arguments that you want to be able to specify
while executing the function. In this case, we only have the argument x, which is the object for
which we want to calculate the standard deviation and mean. Within the function, we specify
this argument wherever we want it to be replaced by the specified object when the function is
executed.

The function() function can also include any arguments that we want to be able to specify
but for which we also want predefined default values. This example doesn’t have any such
arguments, but they would take the form ‘argument = default’.

The {squiggly brackets} denote the beginning and end of the function; in this case it is only one
line long. Other functions can span tens or hundreds of lines of code.

Functions are assigned to an object name, and called using that name.

Applying our new cv () function:
CV(x = rowSums(Oak abund)) # CV of plot totals
CV(x = colSums(Oak abund)) # CV of species totals

This function can be used with any data, not just the row and column sums that we are focusing on

here. For example:
CV(x = Oak_explan$Elev.m) # CV of plot elevations

61 | Relativizations

Again, the advantage of a function is that all of the operations specified in the function are carried
out every time it is called.

If you include the code for a function near the beginning of your script, it will be loaded each time
you run your script, and available for use later in the script.

Applications in R

In R, there are several functions that can be used to relativize data. Some are applied to rows or
columns by default — these are generally reasonable defaults, but necessary to be aware of.

apply ()

The apply () function can be used to apply many functions to a matrix. The usage of this function is:
apply (X, MARGIN, FUN, ..., simplify = TRUE)

The key arguments are:

X — the matrix to be analyzed
MARGIN — whether to apply the function to rows (1), columns (2), or both (c(1,2))
FUN - the function to be applied

For example, we could use this function to calculate the species richness of each stand:
apply(X = Oak_abund > 0, MARGIN = 1, FUN = sum)

Note that we have incorporated some indexing into this function. Do you understand what this
indexing did?

What would we be calculating if we switched the margin from 1to 2?

scale() and sweep ()

The scale() function centers and/or scales (i.e., normalizes) a matrix. Its usage is:
scale(x, center = TRUE, scale = TRUE)

The key arguments are:

x —the data matrix
center — Subtract a specified value from each element in a column

o center = TRUE - subtract column mean. This is the default.
o center = FALSE - no centering done
scale —divide each element in a column by a value

o scale = TRUE -divide by root mean square (standard deviation). This is the default.
o scale = FALSE —noscaling done

Relativizations | 62

Note that centering always precedes scaling. If the default values are accepted, this normalizes each
column.

In comparison, the sweep () function adjusts data on the basis of a summary statistic. This sounds
and is generic — centering is a specific example in which the data are adjusted by subtracting the
mean value. No scaling is involved.

For example, imagine that we want to express the abundance of species relative to their median
values. You can verify that the following functions are identical:

Quga <- Oak_abund[, c("Quga.s", "Quga.t")]

scale(x = Quga, center = apply(Quga, 2, median), scale = FALSE)

sweep(Quga, 2, apply(Quga, 2, median))

(note that | restricted attention here to the two oak taxa simply for convenience when comparing
them visually. Both functions could equivalently be applied to the entire data matrix).

vegan: :decostand()

The decostand () function is a versatile means of relativizing (standardizing) data. Its usage is:
decostand(x, method, MARGIN, range.global, logbase = 2, na.rm = FALSE, ...)

The key arguments are:

x — the data frame or matrix to be relativized
method - relativization / standardization method to be applied. Each method has a default

margin but can also be applied to the other one. I've highlighted those that are particularly
useful as noted above.

o total —divide by margin total. By default, applied to rows.

> max — divide by margin maximum. This equalizes the contribution of each species in the
matrix. By default, applied to columns.

o frequency - divide by margin maximum and then multiple by the number of non-zero
elements so that the average of the non-zero entries is one. By default, applied to columns.

o normalize — make margin sum of squares equal to one. By default, applied to rows. Note
that this is not the same as the normalizing that is discussed above.

o range — convert values to range from O to 1. By default, applied to columns.

o rank — convert abundance values to increasing ranks — in other words, the most abundant
species will have the largest rank. Zeroes are left unchanged. By default, applied to rows.

o rrank — rank, relativized so that the highest rank is 1. By default, applied to rows.

o standardize — normalize data by converting it to Z-scores (i.e., mean = O, variance =1).
Intended for normally distributed data. By default, applied to columns.

o pa-convert to presence/absence (1 or O, respectively).

o chi.square — Divide by row sums and square root of column sums, and adjust for square
root of matrix total. Can be problematic; we'll discuss this in the context of correspondence
analysis. By default, applied to rows.

° hellinger —square root of total method. By default, applied to rows.

o log-—adjusts values based on a log (specified by logbase). Values greater than zero are log-
transformed, while zeroes are left unchanged. Note, therefore, that this is not a simple log
transformation; see help for details.

o alr —additive log ratio. Commonly used with pH and other chemistry measurements.

o ¢lr —centered log ratio. Commonly used in microbial ecology.

o rclr —robust centered log ratio.

MARGIN — whether to apply to rows (MARGIN = 1) or columns (MARGIN = 2). Each method has a

63 | Relativizations

default margin — explained in the ‘Details’ section of the help file — so this only has to be
included if you want to apply the method to the non-default margin.
na.rm-whether to ignore missing values

As an example, let's relativize elevations by their range:
decostand(x = Oak explan$Elev.m, method = "range")

In this case, the relativization was applied to one variable. Applying it to the entire dataframe is
simply a matter of indexing, and of course making sure that decostand() is being applied to the
correct margin. If we want to relativize our response data by the maximum of each species (column):
Oak abund max <- decostand(x = Oak_abund, method = "max")

vegan: :wisconsin()

When working with species abundance data, a common approach is to standardize each species by
its maximum, and then each site by its total. This double standardization is known as a Wisconsin
standardization as it was first applied to data collected in that state.

Wisconsin standardization is simply done using the wisconsin() function:
Oak_abund_standl <- wisconsin(Oak_abund)

Verify that this is identical to the result of two calls to decostand (), first standardizing columns by
their maxima and then rows by their totals:

Oak_abund stand2 <- decostand(decostand(Oak abund, "max"), "total") # nested
functions
Oak_abund stand2 <- Oak_abund |> decostand('max") |> decostand("total") # piped

Concluding Thoughts

Decisions about how to adjust data - including whether and which variables to relativize -
can strongly affect the conclusions of subsequent analyses. Relativizations can be made to both
response variables and explanatory variables. Most of the techniques that we are using in this course
make minimal statistical assumptions, which means that adjustments do not have to be made for
statistical reasons but rather can focus on the ecological questions of interest.

With species data, several types of standardization are common, depending on the objectives of the
study. Some studies will not do any standardization, some will standardize columns only, some will
standardize rows only, and some will standardize both rows and columns.

Relativizing by row may be appropriate for a full matrix or for appropriate subsets of the data. For
example, it would not be appropriate to relativize by rows if the columns of interest were not logically
related to one another (e.g., elevation, soil depth, aspect).

Relativizing by column can be particularly helpful when variables have not been measured on the
same scale but want to be given equal weight. This is true for both response and explanatory
variables.

Actions such as deleting rare species, transforming data, and relativizing data should be done

Relativizations | 64

through scripts, not through permanent changes to the raw data file. Scripting these actions
ensures flexibility to try other adjustments, skip them entirely, etc.

Sometimes answering our ecological questions require a series of adjustments. The order of
adjustments can affect the resulting data. See this appendix for guidance about the order in which
to conduct data adjustments. For example, in one study (Mitchell et al. 2017) we analyzed plant
community structure. Our raw data was a plot x species matrix where the elements were the
abundance of each species in each plot in 2002. Our workflow included a number of steps:

Summed the abundances of all species on a row-by-row basis to yield total cover.

Transformed the abundances to presence/absence data, and then summed those data on a
row-by-row basis to yield species richness.

Grouped species by their functional group, and calculated the cover for each functional group.
Then, we relativized the abundances by row totals (so, each row summed to 1), and calculated
the proportion of the cover accounted for by each functional group. Thus, we were focusing on
the relative abundance of these functional groups. We did not analyze absolute abundances.
Combined these data with a similar plot x species matrix of the same plots in 1989 to determine
how much composition had changed during this period. To combine data from these two
years, we had to resolve taxonomic differences between years. We also elected to delete rare
species. After these adjustments, we calculated the compositional change from 1989 to 2002
as the Bray-Curtis dissimilarity (one of the distance measures we'll discuss soon) between the
two years.

Which Adjustments to Make, and in What Order?

A series of adjustments are often required to organize the data in a way that permits our questions to
be answered. Think carefully through which adjustments to make and in which order to make them —
these decisions can affect the conclusions of analyses.

References

Fox, J. 2013. Do ecologists ever confuse absolute and relative fitness?
https://dynamicecology.wordpress.com/2013/09/24/dont-confuse-absolute-and-relative-fitness/

Freckleton, R.P., A.R. Watkinson, and M. Rees. 2009. Measuring the importance of competition in
plant communities. Journal of Ecology 97:379-384.

Grace, J.B. 1995. On the measurement of plant competition intensity. Ecology 76:305-308.

Hopkins, H.L., and M.L. Kennedy. 2004. An assessment of indices of relative and absolute abundance
for monitoring populations of small mammals. Wildlife Society Bulletin 32:1289-1296.

Hurskainen, S., K. Alahuhta, H. Hens, A. Jakalaniemi, T. Kull, R.P. Shefferson, and J. Tuomi. 2018.
Vegetative dormancy in orchids incurs absolute and relative demographic costs in large but not in
small plants. Botanical Journal of the Linnean Society 188:426-437.

McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. MjM Software Design,
Gleneden Beach, OR.

65 | Relativizations

Mitchell, R.M,, 1.D. Bakker, J.B. Vincent, and G.M. Davies. 2017. Relative importance of abiotic, biotic,
and disturbance drivers of plant community structure in the sagebrush steppe. Ecological
Applications 27:756-768.

Yates, K. 2019. The Math of Life & Death: 7 Mathematical Principles That Shape Our Lives. Scribner,
New York, NY.

Media Attributions

Hurskainen.et.al.2018_Figurel

Relativizations | 66

8. Matrix Algebra Basics

Learning Objectives

To describe the basics of matrix algebra.

To continue using R.

Resources

Gotelli & Ellison (2004, appendix)

Introduction

This chapter takes a detour to cover some key mathematical concepts that are foundational to
everything that follows in this course. Some of this will seem abstract initially, but it's followed by a
worked regression example and an introduction to eigenanalysis which forms the basis for principal
component analysis (PCA)!

By convention, mathematicians use bold uppercase text (X) to indicate a matrix and bold lowercase

text (x) to indicate a vector. However, these conventions don't apply in R: bold formatting isn't
available, and we can name a matrix object like we name any other object.

Vectors

Recall that a scalar is a single numerical value:
X <=5

A vector is a series of n scalars. Mathematically, a vector is assumed to be a column vector (i.e., n
rows x 1 column), though see below for some nuance about this.

Vectors can be created in several ways. One way is to combine a series of values using the c()
function (note that this is a lower-case ¢):
v <- ¢(1,3,5,7,9); v

67 | Matrix Algebra Basics

13579

Another way is by specifying a sequence of values:
v <- seq(from = 1, to = 9, by = 2); v # Equivalent
v <- seq(l, 9, 2) #same, without argument names

These commands are extremely versatile.

Vectors can be indexed using [] just like we do for a matrix. However, a matrix is indexed with
respect to [row, column], while a vector just has to be indexed with respect to the position of an
element within the vector:

v[3]

Nuances About Vectors in R

R displays vectors as row vectors (i.e., 1 row x n columns) as this takes less screen space than a column
vector (i.e., n rows x 1 column). See the output of v above for an example of this. Mathematically,
however, vectors are always assumed to be column vectors (n x 1).

R attempts to make all operations work: “if you use a vector in an operation that succeeds or fails
depending on the vector’s orientation, R will assume that you want the operation to succeed and will
proceed as if the vector has the necessary orientation” (Eliner & Guckenheimer 2011, p. 13). This can
cause problems because an operation can work even when you don't want it to, or where it should not
mathematically!

Matrices

A matrix is a two-dimensional object consisting of m vectors. Since each vector is of length n, the
size of the matrix is n x m. Note that all vectors have to be the same length.

The matrix() function can be used to create a matrix from a sequence of numbers. The nrow
argument tells R how many rows to include.
A <- matrix(data = ¢(3,-1,0,4,5,2), nrow = 3); A

(.11 [,2]

[1,1] 8 4
[21] =1 5
(3,1 0 2

Matrix Algebra Basics | 68

Alternately, you could use the ncol argument to specify how many columns to include. You don't
need to specify both because R determines the other dimension based on the number of elements
included in the data argument. If you specify a number of rows (or columns) that is not an integer
divisor of the total number of cells, R will display a warning message and recycle the numbers to
complete the matrix:

Al <- matrix(data = 1:9, nrow = 4); Al

The matrix() function includes other arguments besides nrow and ncol. The arguments are
described in the R help:
?matrix

Note the default values for each argument. For example, the byrow argument defaults to FALSE,

meaning that data are not added one row at a time but rather are added on a column-by-column
basis. If you set byrow = TRUE, data are added on a row-by-row basis:

B <- matrix(data = c¢(3,-1,0,4,5,2), nrow = 3, byrow = TRUE); B

Compare objects A and B to verify that the data have been added to the matrix in different orders.

Recall that we use square brackets to index elements in a matrix (or data frame), and we always
discuss elements relative to [row, column]. This indexing enables you to call the elements that
you're interested in. These elements can be viewed, assigned to another object name, or
manipulated:

A[3 , 1]

C <- B[l:2 ,]; C

B[l ,] <- B[l ,] * 10; B # What does this do?

B[B > 2] # And this?

The size of a matrix is important for operations such as matrix addition, subtraction, and
multiplication. Its size is expressed by its dimensions, which can be obtained using the dim()
function, or by requesting the number of rows or columns specifically:

dim(a)

nrow(A)

ncol (A)

Although a vector can mathematically be considered a matrix of n x 1 dimensions, as noted above,
these functions don't work for vectors; use length () instead. If you want to force a vector to be
recognized as a matrix, you have to set it to that class.

Matrices can be combined with respect to rows or columns:
rbind(A,B) # stacked
cbind(A,B) # side-by-side

However, matrices can only be combined if the appropriate dimension is the same for each. For
example, two matrices that have the same number of rows (and any number of columns) can be
combined with respect to columns (i.e., side-by-side):

cbind (A, B)

cbind(A, C) # Doesn’t work!

The number of columns in each matrix doesn’t affect cbind(). However, the opposite is true with

69 | Matrix Algebra Basics

rbind(): the matrices must have the same number of columns, and the number of rows doesn'’t
matter.

Keep in mind that there must be a logical reason to combine the matrices in a particular order. If A
and B are plot x species matrices, what are we assuming when we combine them using cbind()?

In addition, with rbind () note that the columns that are being stacked together must contain the
same class of data.

Matrix Addition and Subtraction

Matrix addition and subtraction are performed element-by-element. Therefore, the matrices to be
added or subtracted must be of identical dimensions — both rows and columns. The number of rows
does not have to equal the number of columns, however.

To demonstrate this, we'll begin by re-assigning A, B, and C to correspond to Equation Al from
Gotelli & Ellison (2004):

A <- matrix(data = c¢(3,-1,0,4,5,2), nrow = 3)

B <- matrix(data = c(4,1,-2,8,-3,6), nrow = 3)

C<- A+ B; C

Matrices are commutative with respect to addition — the order of the terms doesn’t matter:
A+ B
B + A

Matrices are also associative with respect to addition — the order in which the operations are
conducted, as determined by which terms are in parentheses, doesn’'t matter:

(A + B) +C

A+ (B + C)

However, matrices are not commutative or associative with respect to subtraction (Gotelli & Ellison
are incorrect in the first edition of their book; | haven't checked if this has been fixed in later editions):
A - B

B - A

(A - B) -C
A - (B -C)

Scalar and Matrix Multiplication

Two types of multiplication are possible with vectors and matrices: element-by-element and matrix.

Scalar Multiplication

Element-by-element multiplication is the standard type of multiplication (indicated by *) and is
the default in R. This is most easily seen by multiplying a matrix by a scalar (single value). Each
element in the matrix is simply multiplied by the scalar. This process is commutative, associative,
and distributive. For example, here is Equation A.2 from Gotelli & Ellison (2004):

Matrix Algebra Basics | 70

k <=3

A <- matrix(data = ¢(1,2,3,0,2,0,-5,3), nrow = 2)
k * A

A * k

c <-5

c * (k * A)

(c * k) * A

B <- matrix(data = ¢(1,2,3,0,2,0,-5,3), nrow = 2)
k * (A + B)
k *A+ k *B

This type of multiplication can even be applied to matrices, if those matrices are of the same size.
The value in one position in the matrix is simply multiplied by the value in the same position in the
other matrix. For example:

A * A

View this file to verify that we have simply squared every value.

Matrix Multiplication

Matrix multiplication is a bit more complicated than scalar multiplication - in fact, it is not always
possible. The number of columns in the first matrix must equal the number of rows in the second
matrix - if they are not equal, matrix multiplication cannot occur.

One way to figure out whether two matrices can be matrix multiplied is by writing down the
dimensions of each matrix. For example, here are the matrices from Equation A.3 of Gotelli & Ellison
(2004):

A <- matrix(data = ¢(1,2,3,0,3,-2), nrow = 2) # A is a 2x3 matrix

B <- matrix(data = ¢(1,3,-1,-2,2,3,2,2,3), nrow = 3) # B is a 3x3 matrix

Matrix multiplying A and B involves combining a (2x3) matrix and a (3x3) matrix.

Since the inside numbers are the same, they can be matrix multiplied.
The outside dimensions indicate the dimensions of the resulting matrix (here, 2 rows x 3
columns).

Why? Well, it relates to how the matrix multiplication is actually conducted. Recall that we always
refer to rows first, columns second. In matrix multiplication, each element in a row of the first matrix
is multiplied by the element in the corresponding column and position of the second matrix, and
the products are summed together. If the inner dimensions of the two matrices aren’t equal, there
will be elements in one matrix that cannot be multiplied by something in the other matrix.

The calculation for the first row of A and first column of B in our example is:

Element locations: ([1,1] * [1,1]) + ([1,2] * [2,1]) + ([1,3] * [3,1])

Data: 1*N+@B*3)+3*-1)=7

This process is illustrated graphically for two values below.

71 | Matrix Algebra Basics

Example of how matrix multiplication is the sum of the
products of the elements in a row of one matrix (A) and
the elements in a column of another matrix (B). From
Wikipedia.

The matrix multiplication symbol ($*%) tells R to repeat this calculation for each pair of elements in
the matrices:
A %*% B

Assuming the matrices are of the proper dimensions to actually be multiplied, matrix multiplication
is associative:

A $*% (B %*3% B)

(A %*% B) %*% B

However, it is not commmutative:
A %*% B
B %*% A # Doesn’t work

Matrix Multiplication

The order of the matrices matters during matrix multiplication. As a result, the terminology needs to
be precise. For example, the equation AB can be equivalently described as:

The premultiplication of B by A
The postmultiplication of A by B

Matrix Algebra Basics | 72

Matrix Transposition and Symmetry

In some cases, matrix multiplication is not possible in one configuration but would be possible if the
rows and columns of one of the matrices were reversed. This reversal is known as transposition, and
is easily done in R:

A # 2x3 matrix

t(A) # 3x2 matrix

The transpose of A is written as A’ or AT

We saw above that BA did not work, but compare this with BA':
B %*% t(A) # Why does this work?

Note that the dimensionality of BAT, and the elements within this product, differ from those in AB.

Many matrices are square - the two dimensions are the same. Square matrices can have many
desirable properties. In particular, square matrices can be symmetric, meaning that they are
identical to their transpose. This can be verified by visually comparing a matrix with its transpose or
by subtracting one from the other (if symmmetric, what should the result be?).

A <- matrix(data = ¢(1,2,2,2,4,3,2,3,-4), nrow = 3) # What are the dimensions of
this matrix?

A

t(A)

A - t(A)

However, not all square matrices are symmetrical:

B <- matrix(data = ¢(1,3,-1,-2,2,3,2,2,3), nrow = 3)
B

t(B)

B - t(B)

We will see many symmetric square matrices (diagonal matrices, identity matrices, variance-
covariance matrices, distance matrices, etc.) throughout this course.

The diagonal elements of a matrix are often important, and can be easily extracted:
diag(x = A)

This command can also be used to modify the values on the diagonal of a matrix:
A
diag(x = A) <- 10; A

Key Features of (Some) Matrices

73 | Matrix Algebra Basics

Matrices with the following features are particularly useful:

Square
Symmetric (identical to their transpose)

All sysmmetric matrices are square, but not all square matrices are symmetric.

Matrix Inversion

An identity matrix is a symmetric square matrix with 1s on the diagonal and Os elsewhere. It can be
created using the diag() function. Since an identity matrix is symmetric, the number of rows and
columns are the same and you only need to specify one dimension:

I <- diag(x = 4); I

Identity matrices are particularly important with respect to matrix inversion. The inverse of matrix A
is @ matrix that, when matrix multiplied by A, yields an identity matrix of the same dimensions. The
inverse of A is written as A”. The solve () function can determine the inverse of a matrix:

A

solve(A)

A %*% solve(A) # Verify that the product is an identity matrix

(use the round () function if necessary to eliminate unnecessary decimal places)

Inversions only exist for square matrices, but not all square matrices have an inverse.

Sometimes, a matrix has to be inverted to yield something other than an identity matrix. We can do
this by adding a second argument to the solve() function. Suppose we have the equation AA'=B
and need to calculate A™

A <- matrix(data = ¢(1,2,2,2,4,3,2,3,-4), nrow = 3)

B <- matrix(data = ¢(1,2,3,2,3,1,3,2,1), nrow = 3)
A.inv <- solve(A, B)
A %*% A.inv # Verify the result! What should this be?

A matrix is orthogonal if its inverse and its transpose are identical. An identity matrix is an example
of an orthogonal matrix.

Concluding Thoughts

Matrix algebra is an incredibly powerful tool when dealing with multivariate data, and we will be
using these concepts throughout the quarter. For example, distance measures convert observations

Matrix Algebra Basics | 74

of m variables on n sample units (i.e,, a N x m data matrix) into a n x n symmetric square distance
matrix.

References

Ellner, S.P., and J. Guckenheimer. 2011. An introduction to R for dynamic models in biology.
http://www.cam.cornell.edu/~dmb/DynamicModelsLabsInR.pdf

Gotelli, N.J.,, and A.M. Ellison. 2004. A primer of ecological statistics. Sinauer Associates, Sunderland,
MA.

Media Attributions

Matrix_multiplication_diagram_2 is licensed under a CC BY-SA (Attribution ShareAlike) license

75 | Matrix Algebra Basics

9. Matrix Algebra to Solve a Linear
Regression

Learning Objectives

To illustrate how matrix algebra can solve a linear regression.

To continue using R.

Resources

Gotelli & Ellison (2004, appendix)

Introduction

Matrix algebra is helpful for quickly and efficiently solving systems of linear equations. We will
illustrate this by using it to solve a linear regression.

Matrix Formulations of Regression

The matrix algebra formulation of a linear regression works with any number of explanatory variables
and thus is incredibly flexible.

Recall that the model for a simple linear regression isy = mx + b, where b and m are coefficients for
the intercept and slope, respectively. Let's rearrange this slightly and rewrite m as bx:
y=1bo + xb

Note that bg is equivalent to 1bo. In other words, the right-hand side of this equation consists to the
sum of two products: 1 times the intercept plus the measured value of x times the slope. We can

Linear Regression Example | 76

now summarize this in matrix form:
Y =Xb
where

X is a matrix with as many rows as there are data values and two columns (a column of Isand a
column of x values)
b is a vector of two coefficients (intercept and slope)

When we fit a simple linear regression to data, we are determining the coefficients associated with
each variable. Equation A.l4 from Gotelli & Ellison (2004) states that the coefficients (i.e., b) can be
calculated as

b=[X"X]"x"Y]

Chlorella Example

Let's use a simple example to see how these calculations work. We will use a dataset containing the
maximum per-capita growth rate of an alga, Chlorella vulgaris (y), and light intensity (x). These data
are from Ellner & Guckenheimer (2011). The dataset is available in CSV format through the book’s
GitHub site. Download it into the ‘data’ sub-folder within your SEFS 502 folder. Open the course R
Project and then read the dataset into R:

chlorella <- read.csv("data/chlorella.csv", header = TRUE, row.names = 1)

head(chlorella)

X y
1 20 1.73
2 20 1.65
3 20 2.02
4 20 1.89
5 21 2.61
6 24 1.36

The column y is the vector of responses. The column x is the vector of values for the explanatory
variable, light intensity.

To organize the linear regression model in matrix form, we need to combine each value of
chlorella$x with a ‘1" that can be multiplied by the intercept bo. We'll organize the ones in a
column, combine the two columns of explanatory variables, and convert the resulting object to class
matrix:

X <- matrix(

data = c(rep(1l,11), chlorella$x),

nrow = 11)

Note that rep(1,11) simply repeats the number 1 eleven times.

Now we can solve equation A.l4:

b <- solve(t(X) %*% X) %*% (t(X) %*% chlorellaS$y)

| have simply restated the equation from above, using transposes and inversions as discussed in the
‘Matrix Algebra Basics' chapter.

77 | Linear Regression Example

The result of these calculations, the object b, is an object that contains the intercept and slope of the
equation relating Chlorella growth rate to light intensity.

[,1]
[1,] 1.58095214
[2,] 0.01361776

We can graph the Chlorella data and add to it the line described by this slope and intercept:
library(ggplot2)

ggplot(data = chlorella, aes(x = X, ¥
geom point() +
geom_abline(intercept = b[1l], slope = b[2]) +

y)) +

theme bw()
[]
[]
20 40 60 a0 100
X

Relationship between light intensity (x) and Chlorella growth rate (y),

as calculated via matrix algebra.

Verification

We can verify our results by comparing them with the coefficients produced from the 1m() (linear
model) function:
Im(y ~ x, data = chlorella)

In this formula, the ~ means ‘as a function of’; here, we fit y as a function of x. The 1's that are
multiplied by the intercept are automatically accounted for when using 1m() and related functions.

The coefficients are labelled here, and are identical to those that we calculated above.

Linear Regression Example | 78

Call:
Im(formula = y ~ x, data = chlorella)

Coefficients:
(Intercept) X
1.58095 0.01362

Extensions

Matrix algebra can also be used to calculate other types of information that can be extracted from a
regression. Let's walk through a few.

Predicted Values of y

The predicted value of y for each observation (row) is the value obtained by applying the coefficients
obtained above to that observation’s value of x. In other words, this is the solution to the linear
regression formula that we re-arranged above, Y = Xb:

Y pred <- X %*% b

For verification, multiply a value of x times the slope, and add the intercept.

Residuals

The residual for each observation (row) is the difference between its actual and predicted values of y:
residuals <- chlorella$y - Y pred

For verification, see resid(1lm.res).

Predicted Values for a Range of x Values

The predicted values across a range of x values simply requires that we specify which values of x we
want to use. Let's use 50 values that span the range of x in our data:

X range <- matrix(

data = c(rep(1l,50), seq(from = min(chlorella$x), to = max(chlorella$x), length.out
= 50)),

nrow = 50)

Y range <- X range %*% b

These could be the values that are graphed as a fit line in ggplot, for example (you can do so and
compare to the above graph to verify).

79 | Linear Regression Example

Note that it isn't necessary to use this many values when graphing a linear fit, but a large number of
values would be helpful if we had transformed one of our variables and were back-transforming the
fit for presentation — more values will show a smoother curve for the resulting non-linear fit.

Concluding Thoughts

The appeal of this matrix formulation of a linear regression is that it can be easily generalized to
any number of explanatory variables - fitting a response as a function of two variables simply adds
one column to X and one value to b, but does not change the matrix form of the equation, or the
corresponding calculation. This gives the matrix formulation of this equation incredible flexibility.

References

Ellner, S.P.,, and J. Guckenheimer. 2011. An introduction to R for dynamic models in biology.
http:/mwww.cam.cornell.edu/~dmb/DynamicModelsLabsInR.pdf

Gotelli, N.J,, and A.M. Ellison. 2004. A primer of ecological statistics. Sinauer Associates, Sunderland,
MA.

Media Attributions

chlorella

Linear Regression Example | 80

10. Eigenanalysis

Learning Objectives

To use matrix algebra to conduct eigenanalysis, and to begin interpreting the resulting eigenvectors
and eigenvalues.

To continue using R.

Resources

Gotelli & Ellison (2004, appendix)

Introduction

Eigenanalysis is a method of identifying a set of linear equations that summarize a square matrix.
It yields a set of eigenvalues (A), each of which has an associated eigenvector (x). The connection
between these terms is expressed in Equation A.16 from Gotelli & Ellison:

AX = AX

In words, this says that the multiplication of a square matrix A and a vector x will yield the same
values as the multiplication of a scalar value A and the vector x. While this may not sound very
helpful, it means that data (A) can be rotated, reflected, stretched, or compressed in coordinate-
space by multiplying the individual data points by an eigenvector (x). We'll see much more about
eigenvectors when we discuss ordinations, particularly principal component analysis (PCA).

Eigenanalysis

Eigenanalysis is a method of summarizing a square matrix. Each dimension is represented by an
eigenvector and associated eigenvector.

The dimensions are in decreasing order of importance; each dimension captures as much of the

81 | Eigenanalysis

variation as possible. This is why we can focus on the first few dimensions and be assured that we are
seeing the broad patterns within the data.

If all of the eigenvectors are used, the patterns within the data cloud are perfectly preserved even
though the cloud itself may be rotated, reflected, stretched, or compressed.

Spectral Decomposition (eigen())

The eigenvalues (A) and eigenvectors (x) of a square matrix A can be calculated using the eigen()
function:

A <- matrix(data = 1:4, nrow = 2)

E <- eigen(x = A); E

eigen() decomposition
Svalues
[1] 5.3722813 -0.3722813

Svectors

[,1] [,2]
[1,] -0.5657675 -0.9093767
[2,] -0.8245648 0.4159736

Note that the eigenvalues and eigenvectors are both reported and can be extracted as necessary for
further manipulation:
Evalues <- ES$values

Evectors <- ES$Svectors

The eigenvalues are always in order of decreasing size. The sum of the eigenvalues is equal to the
sum of the diagonal values of the original matrix.

Each eigenvector is associated with the eigenvalue in the same relative position — for example, the
first eigenvector (a column) is associated with the first eigenvalue.

Now, let’s verify Equation A.16:
A %*% Evectors[,l] # Why is this matrix multiplied?
Evalues[l] * Evectors[,l] # Why isn’t this?

Gotelli & Ellison also state that (A — Al)x = O (Equation A.17). Can you verify this equation?

The trace of a matrix is equal to the sum of its diagonal values or, equivalently, the sum of its

Eigenanalysis | 82

eigenvalues:
sum(diag(A))
sum(Evalues)

The determinant of a matrix is equal to the product of its eigenvalues:
prod(Evalues)

It can also be obtained using the det () function:
det (A)

Singular Value Decomposition (svd())

Another way to obtain the eigenvalues and eigenvectors of a matrix is through singular value
decomposition using the svd () function:
A.svd <- svd(x = A); A.svd

$d
[1] 5.4649857 0.3659662

sSu

[,1] [,2]
[1,] -0.5760484 -0.8174156
[2,] -0.8174156 0.5760484

Sv

[,1] [,2]
[1,] -0.4045536 0.9145143
[2,] -0.9145143 -0.4045536

Gotelli & Ellison (2004) discuss singular value decomposition but use a different symbology in
Equation A.22 than is used in the help file associated with svd(). The symbology in the R
formulation, X = UDV’, is defined in the table below.

Matrix Dimension Notes

X mxn The matrix being analyzed

U m X N

D nxn Diagonal matrix with singular values of X on diagonal
\"/ nxn Note: transposed in equation

The output consists of the full U and V matrices and the singular values of D. However, they are
referred to using lower-case letters as shown in the above output.

83 | Eigenanalysis

The eigen() and svd () approaches give broadly similar — but not identical - results:

A.svd$d is analogous to E$Svalues. Each of these is an eigenvalue.

A.svd$u is analogous to ESvectors. It is a set of vectors, each of which is associated with an
eigenvalue and relates to the rows of the original matrix.

A.svd$v is another set of vectors. Each vector is associated with an eigenvalue, but relates to
the columns of the original matrix. This is used in Correspondence Analysis (CA), though many
people find it problematic. See that chapter for details.

Concluding Thoughts

While eigenvalues and eigenvectors may sound abstract, they are used to rotate, reflect, stretch, or
compress data in coordinate-space by multiplying the individual data points by an eigenvector (x).
The fact that the eigenvectors are in descending order of importance is what allows us to use this as
a data reduction approach.

We'll see much more about eigenvectors when we discuss ordinations, particularly principal
component analysis (PCA).

References

Gotelli, N.J,, and A.M. Ellison. 2004. A primer of ecological statistics. Sinauer Associates, Sunderland,
MA.

Eigenanalysis | 84

11. Properties of Distance Measures

Learning Objectives

To consider the desirable properties of distance or dissimilarity measures, including the difference

between the two.
To introduce the distance matrix as a method of summarizing a set of pairwise distances.

To understand how distance measures use matrix algebra to provide a link between raw data, data
adjustments, and techniques to test for statistical differences, identify groups, and visualize patterns.

Introduction

Distance measures are an essential component of many ecological analyses. Here, we'll review the
properties of the distance measures that are most commonly used in ecological studies.

Distance measures can be calculated among plots (aka sample units; the rows in your data matrix)
or species (aka variables; the columns in your data matrix). However, most analyses are based on the
distances among plots, so that's what I'll assume throughout these notes.

Terminology

Many people use the terms ‘distance’ and ‘dissimilarity’ interchangeably, though some authors
recommend using ‘distance’ only for metric indices (those that satisfy the triangle inequality — see
below).

Similarity is the opposite of dissimilarity. Similarity can only be calculated for metrics which have an

upper limit.

Simple Examples

A helpful way to begin thinking about the idea of distance is to consider univariate or one-
dimensional data. For example, here are data from two plots:

85 | Properties of Distance Measures

Plot Total Richness
H 4
| 10

These two plots obviously differ by 6 species. This is the distance between the two plots.

Now, suppose that we distinguished annual and perennial plants within each plot:

Plot Annual Richness Perennial Richness
H 3 1
| 7 3

Total richness is the same as before, but what is the distance between the two plots now?

A reasonable first step is to use the Pythagorean theorem (02 +p% = c2) to calculate the Euclidean
distance (ED) between the two plots:

ED = \/(wHA —z14)? + (xup —x1p)’ = \/(3 —7)% + (1 — 3)? = 4.47 species

Incorporating information about the longevity of the plant species has reduced the distance
between the plots from 6 species to 4.5 species. A visualization of this calculation is shown below.

4
w 3
0
% //b(.b;l,
b_: 2 C/“) b:2
‘©
c
c
v 1 -
] a=4
o

0

0 2 4 6 8

Annual Richness

Distance between two sample units in terms of the richness (number of species) of
annual and perennials, as calculated with the Pythagorean theorem.

Desirable Properties of Distance Measures

We will consider five desirable properties of distance measures (more have been suggested — see
Legendre & De Caceres (2013) for details).

Properties of Distance Measures | 86

1) Zero If Identical

If sample units A and B have the same values for all variables, the distance between them should be
zero.

This is true of all distance measures we will consider.

2) Positive

If sample units A and B do not have the same values for all variables (i.e., are not identical), the
distance between them should be positive. Since the distance is zero when they are identical
(property 1), what would a negative distance mean?

This is true of all distance measures we will consider.

3) Symmetric

A distance measure is symmetric if the distance from A to B equals the distance from B to A.

This is true of all distance measures we will consider. When would a distance measure not be
symmetric? Some examples are found in mapping applications. In essence, these applications
seek the shortest distance between two points. However, there are multiple scenarios in which the
shortest distance between two points is not the same:

Driving directions, especially when there are one-way streets. The roads you use to getto a
location are not the same ones you would use to drive back from that location. This is a special
form of the Manhattan or city block distance. More information: https://fen.wikipedia.org/wiki/
Taxicab_geometry.

Estimates of travel time between destinations that incorporate elevation and account for the
fact that it is more work to walk uphill than downhill. For example, Google maps estimates that
it would take 4 minutes less time for me to walk to UW than home from it, probably due both
to slightly different route recommendations and to the elevation difference. This example is
modified from https:/fen.wikipedia.org/wiki/Metric_(mathematics)#Quasimetrics.

As an ecological example, Acevedo et al. (2015) studied a wind-dispersed orchid and showed
that models which accounted for wind direction more accurately predicted its colonization and
extinction dynamics. In other words, if sample unit A is downwind of sample unit B, the
effective distance between them was smaller from B to A than from A to B - pollen would have
to travel farther’ upwind from A to B.

4) Metric or Semimetric?

When we have multiple sample units, we can calculate distances between many pairs of sample
units. For example, if we have three sample units (A, B, C), we can calculate the distance from A to
B, Ato C, and B to C. Imagine the distances between A, B, and C as the sides of a triangle with the
vertices representing the sample units.

A metric distance measure follows the principles of Euclidean geometry in what is known as the
triangle inequality theorem (see image below): the distance from one sample unit to another (e.g,,
Ato C) is always smaller than the combined distance from the first to the other by way of a third (e.g,,

87 | Properties of Distance Measures

A to B and B to C). Measures that satisfy this inequality are most properly referred to as ‘distance
measures’.

Triangle Inequality Theorem:
The sum of the lengths of any two
sides of a triangle is greater than
the length of the third side.

A

a+b>c
a+e>b
b+c>a

Measures that do not satisfy the triangle inequality theorem are semimetric. With these measures,
Euclidean geometry may not work — the distance from A to C can be greater than the combined
distance from A to B and B to C. These are properly referred to as ‘dissimilarity measures’. See the
Sorenson dissimilarity in the next chapter for an example.

5) Is There a Constant Maximum?

Some measures do not have an upper limit — no matter what the distance is between two sample
units, you can conceive of a situation in which the distance would be greater. For example, consider
the physical distance between sample units. No matter how far apart two sample units are, you can
envision another pair of sample units that are further apart.

Other measures have a constant maximum, meaning that there is no situation in which the
distance could be greater. This can happen when samples have no elements in common, and often
arises when the distance is expressed as a proportion of some total — doing so bounds the values to
be less than or equal to 1. Many of these are dissimilarity measures.

The presence of a constant maximum permits a dissimilarity measure to also be expressed as a
similarity measure. For example, if two sample units have a dissimilarity of 0.25 in a measure with
a maximum dissimilarity of 1, it would be equivalent to say that they have a similarity of 0.75 (i.e,, 1-
0.25).

The Distance Matrix

When a distance measure is applied to multiple plots, a distance is calculated for every pairwise
combination of plots. These distances are then assembled into a distance matrix (or dissimilarity
matrix). For example, here is a distance matrix between three plots (A, B, C):

Properties of Distance Measures | 88

A B C
A 00 08 04
B 08 00 05
C 04 05 00

This matrix has several important features:

It is square - recall from the matrix algebra chapter that many of the manipulations possible
with matrix algebra are applied to square matrices.

It is symmetric (desirable property #3) — for example, the distance from A to B is the same as
the distance from B to A. This means that the upper-triangle is a mirror image of the lower-
triangle.

The distance between a plot and itself is zero (desirable property #1) — all values along the
diagonal are zero.

The first row and last column are non-informative — they contain information that is also
reported elsewhere in the matrix.

As a result of these features, we often display a distance matrix more concisely as a lower triangular
matrix:

A B
B 0.8
C 04 05
Although this doesn't look like a matrix and is neither square or symmetric, it is still described as a

distance matrix. Furthermore, even though it may appear to have only two rows and two columns it
is still a 3 x 3 distance matrix.

A distance matrix summarizes the distances between every pair of sample units.

How does the number of pairwise distances scale with the number of sample units? There are
nxXn= ’n,z pairwise combinations of N sample units. However, since a distance matrix is

symmetric with zeroes on the diagonal, the number of unique pairwise combinations is

n(n —1)
2

How many unique pairwise combinations are there for:
3 sample units?
10 sample units?

20 sample units?

89 | Properties of Distance Measures

The Distance Matrix

The distance matrix is square and symmetric, with zeroes on the diagonal. Therefore, it is often shown
simply as its lower triangle.

The number of pairwise distances in the matrix is a function of the number of sample units.

The number of variables has no effect on the size of the distance matrix.

Conclusions

The calculation of a distance between two sample units compresses or combines all of the
differences between two samples into a single number. This ‘compression’ occurs regardless of
whether the samples are being compared with respect to a single variable (e.g., species richness) or
a multivariate measure (e.g., community composition). Can you see how this is so?

Another way of stating this is that the size of the distance matrix is a function of the number of
sample units, not the number of variables. Because a distance matrix is unaffected by the number
of variables, distance-based techniques can be applied identically to both univariate and
multivariate data; separate techniques are not required as is the case with conventional parametric
techniques (e.g., ANOVA vs. MANOVA).

There are many ways to combine the differences between sample units. The next chapter reviews a
number of these distance measures.

The rest of this course builds upon the foundation laid up to this point. Once we have made all
desired data adjustments and expressed the differences among samples in a distance matrix, we
can use that distance matrix to test for differences among pre-existing groups, visualize patterns,
identify natural groups in the data, etc.

This road map might clarify the process:

Properties of Distance Measures | 90

p variables p variables
(%]
0 = 0
E z £
> s 3 O o
2 z 2 Z 3
£ =2 5 S
3 52 8 oS
< nxp :’> < nxp |:‘> nxn
data matrix data matrix distance matrix
STATISTICAL VISUALIZE IDENTIFY
TESTS PATTERNS GROUPS
(LINEAR MODELS)
References

Acevedo, M.A, R.J. Fletcher Jr,, R.L. Tremblay, and E.J. Meléndez-Ackerman. 2015. Spatial asymmetries
in connectivity influence colonization-extinction dynamics. Oecologia 179(2):415-424.

Legendre, P., and M. De Caceres. 2013. Beta diversity as the variance of commmunity data: dissimilarity
coefficients and partitioning. Ecology Letters 16:951-963.

Media Attributions

richness
- triangle.inequality
- analysis.road.map

91 | Properties of Distance Measures

12. Common Distance Measures

Learning Objectives

To consider a range of distance measures used with ecological data, and the types of data for which
they are appropriate.

To consider whether shared absences matter and how to deal with empty sample units.

To continue using R.

Resources

Legendre & De Caceres (2013)

Key Packages

require(tidyverse, vegan, labdsv, ecodist, betapart)

Introduction

Distance measures are an essential component of many ecological analyses. There are many to
choose from; Legendre & De Caceres (2013) compared 16 of them, and Legendre & Legendre (2012,
Table 7.2) list 26 of them! Borcard et al. (2018) devote an entire chapter to distance measures, using
two primary criteria to organize their discussion:

What are the distributional characteristics of the data? For example, are the data binary (e.g.,
presence/absence) or continuously distributed (e.g., abundance)?

Are shared absences meaningful? A shared absence is a species (or other variable) that is
absent from both sample units under consideration. Data are ‘symmetric’ if a shared absence
is meaningful, and ‘asymmetric’ if it is not. Symmetry in this case means that two samples
having the same zero value is as meaningful as those samples having another value the same
(e.g., if the value of a variable was 1.5 for both samples). Species composition data are a prime
example of a situation where shared absences are not meaningful, as discussed in the ‘Two

Common Distance Measures | 92

Issues to Consider’ section below.

Combinations of these criteria are most appropriately handled using different types of distance
measures. A few distance measures are identified here; those discussed below are in bold.

Species data (asymmetric) Non-species data (symmetric)
Bray-Curtis
Euclidean
Quantitative (continuous) Chi-Square
Manhattan
UniFrac
Mixed, including categorical Gower
Jaccard
Binary Sorenson Simple matching
UniFrac

Note: the simple matching distance measure is not commonly used in ecology, and is not discussed
here.

Euclidean Distance

The Pythagorean theorem is easily visualized in two dimensions, as we did in the last chapter. It can
also be applied to more dimensions, though it rapidly becomes difficult to visualize this.

The formula for the Euclidean Distance (ED) between samples i and h across p dimensions is:

p

ED = | Y (an; — a;)*

J=1

Here is a dataset reporting the presence or absence of each of five species (variables) on three plots:

Plot SppA SppB SppC SppD SppE
1 1 1 1 0 0
2 0 0 0 1 1
3 1 1 1 1 1

(Source: Legendre & Legendre 2012, p. 311)

What is the Euclidean distance (ED) between each pair of plots?
ED(2)=___

ED(1,3) =

ED(2,3) = _

93 | Common Distance Measures

Verify that the distance from a plot to itself is zero (property 1), and that the distance from plot 1 to
plot 2 is the same as the distance from plot 2 to plot 1 (property 3). Euclidean distances can take any
non-negative value from O to infinity (property 2).

Euclidean distances can be calculated using positive and negative values. One potential limitation
of this distance measure is that the calculated distance depends on the scale of the variables. For
example, if variables are measured using very different scales (e.g., biomass in g for forbs, Mg for
trees), the distances will be disproportionately affected by the variables measured using the larger
scales (Legendre & Legendre 2012). However, this can be addressed by relativizing the variables
appropriately before calculating distances.

Euclidean distances are appropriate for many types of data, including geographic distances.
However, Euclidean distances are generally inappropriate for community data (e.g., a plot x species
matrix containing the cover or presence/absence of multiple species). Why? One reason is that it's
possible for two samples with no species in common to have a smaller Euclidean distance than two
samples that share species. For example, compare the Euclidean distances among the following
plots:

Plot SppA SppB SppC

4 0 4 8
5 0 1 1
6 1 0 0

(Source: modified from Legendre & Legendre 2012, Figure 7.8)

ED(4,5) =

ED46)=

ED(5,6) =

Verify that plots 5 and 6 are more similar than plots 4 and 5. Many ecologists find this unsatisfying
because plots 5 and 6 have no species in common whereas plots 4 and 5 share the same species and

differ only in abundance. Instead, they would argue that the presence of the same species is more
important than a difference in abundance of that species.

Manhattan Distance

Euclidean distances are calculated by squaring the difference associated with each variable, but
an alternative is to simply add the (absolute) differences. This is analogous to summing the two
perpendicular sides of a triangle rather than using the Pythagorean theorem to calculate the
hypotenuse.

The formula for the Manhattan distance between samples i and h across p dimensions is:

p

MD =) " | (an; — ai;)|

J=1

In the last chapter, we used the Euclidean distance to calculate the hypotenuse between two sample

Common Distance Measures | 94

units based on the numbers of annual and perennial species. The Manhattan distance between
these sample units is the sum of the two perpendicular sides of the triangle.

This is also called the city-block distance ... can you see why?

Jaccard Similarity and Dissimilarity

Let's consider presence/absence data some more. For any two plots, species occurrences can be
summarized in a contingency table:

Plot B
Present Absent
Plot A Present a b

Absent ¢ d

Note that this is not a data matrix. Rather:

a is the number of species that are present in both plots

b is the number of species that are present in plot A but missing from plot B
c is the number of species that are missing from plot A but present in plot B
d is the number of species that are missing from both plots.

Jaccard (1912) proposed that we quantify the proportion of species that are present in both samples.
This is known as Jaccard similarity (.S y):

a
at+b+e

As a proportion, this value is bounded between O (no shared species) and 1 (all shared species). This
is @ metric measure.

Sy =

Note that species that are missing from both plots (d) are not included in this calculation; see the
‘Two Issues to Consider’ section below for more information on this.

Since Jaccard similarity has an upper bound of 1, it is converted to Jaccard dissimilarity (DJ) by
subtraction. DJ can also be calculated directly from the contingency table of species occurrences:

b+ c
at+b+e

Jaccard dissimilarity is the proportion of species that are absent from one of the samples.

D;=1-S5;=

Refer back to plots 1-3 for which we calculated Euclidean distances. What is the Jaccard dissimilarity
between each pair of plots?

95 | Common Distance Measures

Plotl Plot2
Plot2

Plot3

Note: Recent work has decomposed or partitioned Jaccard dissimilarities into two components,
turnover and nestedness (Baselga 2010, 2012). Turnover is species replacement (one species
replaced with another), while nestedness is the extent to which the composition of one sample unit
is a subset of the composition of another sample unit. See the description of the betapart package
below for more information.

Sorensen Similarity and Dissimilarity

Sorensen similarity (SS) is the proportion of species that are present in both samples, while

accounting for differences in species richness between samples. Using the same terminology as for
Jaccard similarity, the formula is:

G — a B 2a
7 Tarb)tard) 2a+b+c
2

Like Jaccard similarity, this value is bounded between O (no shared species) and 1 (all shared
species). Unlike Jaccard, however, it is semimetric.

Several people proposed this distance measure independently; the original publication by Sgrensen
is from 1948.

Since SS is a proportion, it can be converted to Sorensen dissimilarity (DS) by subtraction. DS can
also be calculated directly from the contingency table:

2a b+c

g g 2a +b+ ¢ 2a +b+ ¢

Sorensen dissimilarity is the proportion of species that are absent from one of the samples.

Refer back to plots 1-3. What is the Sorensen dissimilarity between each pair of plots?

Plotl Plot2
Plot2
Plot3
Notice that these data do not satisfy the triangle inequality: the dissimilarity from plot 1to 3 plus the

dissimilarity from plot 3 to plot 2 is less than the dissimilarity from plot 1to 2. This demonstrates that
the Sorensen dissimilarity is a semimetric measure.

Common Distance Measures | 96

Bray-Curtis Distance

When the formula for Sorensen dissimilarity is extended from presence/absence data to species
abundance data, it results in the Bray-Curtis distance measure:

b Py | aij — angl | S MIN(aij, ;) 2 S MIN(aij, an;)
i,h — =1-— — 1 _
Z?:;[a;; + Z§:1 Qhpj Z?Zl a;; + Zgzl Qh;j a;. + ap,.

where

P is the total number of species

ai; is the abundance of speciesj in sample unit i

QAhj is the abundance of species; in sample unit h

a;. is the total abundance of all species in sample unit/
ap. is the total abundance of all species in sample unit h

These formulae are from chapter 6 of McCune & Grace (2002). The middle and right-hand versions
are the same except that in the right-hand one | used the same terminology in the denominator as
in the formula for the chi-square distance below. This is to permit easier comparisons between the
two measures. Note that these formulae are based on the data matrix, not on the contingency table
that was the basis of the Sorensen dissimilarity.

The Bray-Curtis distance measure is bounded between O (the sample units are identical) and 1 (the
sample units are completely different), and is semimetric.

The Bray-Curtis distance measure is named after the co-authors of the paper in which it was used
(Bray & Curtis 1957). However, and confusingly, it is also known by many other names: Steinhaus,
Czekanowski, Sorensen, and percentage difference. Often this is because the same measure was
proposed independently or because two measures were proposed that were later shown to be
mathematically equivalent.

Several studies (notably, Faith et al 1987) have concluded that the Bray-Curtis distance measure
functions best for community data (e.g., a plot x species matrix). We will see it throughout this
course.

Borcard et al. (2018) note that the Bray-Curtis distance “gives the same importance to absolute
differences in abundance irrespective of the order of magnitude of the abundances ... a difference
of 5 individuals has the same weight when the abundances are 3 and 8 as when the abundances
are 6203 and 6208" (p.39). If this is problematic, the data can be log-transformed before computing
distances.

Note: Recent work has decomposed or partitioned Bray-Curtis distances into two components,
one related to ‘balanced variation in abundance’ and the other to ‘abundance gradients’ (Baselga

2013). These components are analogous to the turnover and nestedness components of Jaccard
dissimilarities. See the description of the betapart package below for more information.

Chi-Square Distance

The Chi-square distance measure is the basis of an ordination technique known as correspondence
analysis, which, with its variants, is popular in some quarters. Simulation tests have found that chi-

97 | Common Distance Measures

square distances do not perform well with community data (Faith et al. 1987), but the popularity of
correspondence analysis means that it is helpful to be familiar with this measure.

The formula for chi-square distance is:

b 1 ap; Qi
D = _.[ﬂ _ £]2

where

P is the total number of species

Qaij is the abundance of speciesj in sample unit

QApj is the abundance of speciesjin sample unit h

a;. is the total abundance of all species in sample unit

ay,. is the total abundance of all species in sample unit h

a.; is the total abundance of species j across all sample units

This formula is from chapter 6 of McCune & Grace (2002).

Like Euclidean distances, this measure involves summing squared differences. However, the chi-
square distance measure also:

Expresses the abundance of each species (@rj and @4;) as a proportion of the total abundance
on the sample unit (a. and a;.). In other words, relativization by row total is built into this
distance measure.

Weights the squared difference by the inverse of the total abundance of the species (@.5). This

is also a built-in relativization, but it's not one of the common ones that we've discussed
previously (e.g., relativization by column maximum). This is relativization by column total.

This last aspect — weighting by the total abundance of the species — is where some of the problems
arise. It means, for example, that:

The distance between two sample units depends on which other sample units are included in
the data matrix.

Since this is an inverse weighting, common species are downplayed and rare species are
weighted more strongly.

UniFrac Distance

In the above distances, each species is considered individually and the distance between them are
summed to determine the total distance between sample units. Another approach is to account for
the degree of relatedness among species. For example, consider these three plots (for simplicity, |
only show three species):

Common Distance Measures | 98

Plot Poa pratensis Poa compressa Hypochaeris radicata

7 5 0 0
8 0 5 0
9 0 0 5

By any of the above distance measures, the magnitude of the difference is the same between any
two plots. However, the species in plots 7 and 8 are from the same genus and thus arguably these
plots are more similar to one another than to plot 9.

UniFrac incorporates phylogenetic information about the taxa in the distance between sample
units. The taxa present in two sample units are placed on a phylogenetic tree. Every branch in this
tree ends at a taxon, and the length of the branch is a measure of how related that taxon is to the
next one to which it connects. A branch is coded as ‘shared’ if the taxon is present in both sample
units and as ‘unshared’ if the taxon is only present in one sample unit. | haven't shown the distance
formula here, but it is simply the sum of unshared branch lengths as a proportion of the total of all
tree lengths. This is a metric measure with values ranging from O to 1.

The original UniFrac measure (Lozupone & Knight 2005) is unweighted, meaning that it gives equal
weight to each taxa (analogous to Jaccard and Sorenson dissimilarities). There is also a weighted
UniFrac which accounts for the relative abundances of taxa (analogous to Bray-Curtis distance) as
well as a generalized UniFrac that combines the weighted and unweighted approaches in a single
framework (Chen et al. 2012). More recently, this approach has been adapted for use in paired and
longitudinal designs as are commonly used in microbiome studies (Plantinga et al. 2019).

This distance measure is not as easy to apply as the others as it requires phylogenetic information in
addition to the standard composition matrix (sample units x species). It obviously is only relevant for
compositional data.

Gower’s Distance

Most distance measures assume that the underlying data are continuously distributed, but Gower
(1971) proposed a generalized coefficient of dissimilarity that can be applied to a dataset consisting
of a variety of data types: continuously distributed, nominal, and/or ordinal variables. Greenacre &
Primicerio (2013) provide a nice description of this approach. Gower's distance is available in several
of the functions summarized below.

Mahalanobis Distance

Mahalanobis (1936) proposed a way to compare a sample to sets of other samples and determine
how likely the sample belongs to each set. The formula includes the covariance matrix to account
for differences in variability among variables. It is intended for multivariate normal data.

One way the Mahalanobis distance can be used is to evaluate whether individual sample units are
outliers relative to the rest of the data — see the ‘Multivariate Outlier Analysis’ chapter for more
information.

99 | Common Distance Measures

Should Shared Absences Matter?

When summarizing species data, ecologists generally prefer distance measures that are not affected
by species that are absent from the two experimental units being compared (cell d in the
contingency table shown in the description of Jaccard similarity above). Species could be absent for
any number of reasons, and it generally doesn’'t make sense to determine the similarity between two
samples based on species that are present in neither.

However, some research has shown that species absences can be informative when dealing with
datasets that contain high beta diversity (species turnover among plots). For more information
about ‘extended dissimilarities’, see De'ath (1999) and Boyce & Ellison (2001), the discussion of the
dsvdis () function below, and the help files for the stepacross () function in vegan. Note that using
a function such as stepacross () will change how distances are calculated such that they no longer
have a fixed upper bound. Anderson et al. (2011) provide an extended discussion about beta diversity.

Dealing With Empty Sample Units

We've mentioned before that most distance measures assume that at least one species is present
in all plots. This can be problematic if you are dealing with a community in which organisms are
heterogeneously distributed — their absence from a given area may be very important information!
For example, consider these data:

Plot SppA SppB SppC

4 0 4 8
5 0 1 1
6 1 0 0
10 0 0 0

These are plots 4-6 from above, together with plot 10 which is empty — there were no species in this
sample unit. There are two common ways to deal with this.

First, you could delete the empty sample units, as we discussed earlier (see ‘Data Adjustment’
chapter). However, this changes the questions being asked - for example, from “how does
composition differ among all plots?” to “how does composition differ among vegetated plots?”.

Second, you could use a ‘zero-adjusted’ distance measure (Clarke et al. 2006). This simply involves
adding a ‘pseudo-species’ with the same small cover value to all plots. Often, the cover value used
is the minimum value that a species would be assigned if present on a plot. This pseudo-species
is added to all plots — not just those that are empty — so that it alters all distances in the same
manner. This approach can be applied to data subject to any distance measure. You would want to
exclude pseudo-species when calculating metrics such as species richness.

Using one of the functions described below, verify that you cannot calculate the Bray-Curtis distance
between plot 10 and any of the other plots. Then, add a ‘dummy’ species with an abundance of 1in
all plots and re-calculate the distance matrix.

Some code that may be of interest:

eg <- data.frame(

Plot = c(llp4", llp5ll, "p6", llploll),
SppA = c(0, 0, 1, 0),

Common Distance Measures | 100

SppB = c(4, 1, 0, 0),

SppC = c(8, 1, 0, 0))

Spp <- c("SppA", "SppB", "SppC")

vegan: :vegdist(eg[1:3 , colnames(eg) %in% c(Spp)])
eg$SppDummy <- 1

vegan: :vegdist(eg[, colnames(eg) %in% c(Spp, "SppDummy")])

R Functions to Calculate Distance Measures

The above distance measures, and others, can be calculated using many R functions, including:

dist() in stats

vegdist () and betadiver () in vegan (this package also includes the designdist () function
for constructing your own distance measure)

dsvdis () in labdsv

distance() and bedist() in ecodist

gdist() and xdiss () in mvpart

daisy() incluster

gowdis () in FD

beta.pair() and bray.part() in betapart

We'll survey a few of these functions here. Don't forget to load these packages before calling their
functions! Details about the measures calculated by each function can be obtained through the R
help files.

Keep in mind that many distance measures are referred to by several equivalent names.

stats::dist ()

The dist () function is part of the stats package which is part of the base R installation and thus is
automatically loaded. It can calculate 6 different distance measures. Its usage is:
dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

The key arguments are:

x — the data matrix, data frame, or distance matrix to be analyzed
method - the distance measure to be used. There are 6 distance measures available:

o euclidean —the default

° maximum - the largest absolute difference among all pairwise elements.

o manhattan — aka City-block. Calculated as the sum of the absolute differences along all
dimensions.

o canberra - Sum across all pairwise elements of the absolute value of the difference divided
by the absolute value of the sum.

o binary - proportion of pairwise elements where one of the two is non-zero. Pairs where
both are zero are ignored.

o minkowski — generalized form of Euclidean and Manhattan distances (see p. 47 of McCune
& Grace (2002) for equation). Requires an additional argument specifying the square root
and power to be applied; the defaultisp = 2.

diag - print the diagonal of the distance matrix? Default is FALSE (no).

101 | Common Distance Measures

upper — print the upper-triangle of the matrix? Default is FALSE (no).
p — power; used only when calculating the Minkowski distance.

vegan: :vegdist ()

The vegdist () function in vegan currently includes 21 distance measures. Its usage is:
vegdist(x, method = "bray", binary = FALSE, diag = FALSE, upper = FALSE, na.rm =
FALSE, ...)

The key arguments are:

x — the data matrix to be analyzed, with plots as rows and variables as columns
method — type of distance measure to use. Notes about a few of the distance measures follow;
the others can be found in the R help files.

o manhattan - identical to result from dist ()
o euclidean - identical to result from dist(), but not the default measure.
o canberra - may yield different results than from dist ()
o clark
o bray — Bray-Curtis. The default measure for this function.
°o kulczynski
o jaccard - computed as 2B/(1+B), where B is the Bray-Curtis dissimilarity. The help file
indicates that Bray-Curtis and Jaccard dissimilarities are rank-order similar and suggests
that the Jaccard “probably should be preferred” because it is metric whereas Bray-Curtis is
semimetric. However, | have not seen any formal evaluation of how sensitive conclusions
are to this choice.
o gower — the help file indicates that this version of Gower’s distance cannot handle mixed
data (e.g., continuous variables and factors simultaneously). | have not tested this.
° altGower
° morisita
° horn
o mountford
° raup
° binomial
o chao —a measure that accounts for unseen species pairs (i.e., differences in sample size that
particularly affect rare species). See Chao et al. (2005) for details.
° cao
o mahalanobis
o chisq - Chi-square distances, as used in correspondence analysis.
°c chord
° aitchison
°o robust.aitchison
binary - whether to use decostand () to convert data to presence/absence before calculating
distances. Default is FALSE (no).
diag—whether to return the diagonal of the distance matrix. Default is FALSE (no).
upper — whether to return the values in the upper triangle of the distance matrix. Default is
FALSE (no).
na.rm-—whether to delete missing observations (pairwise) when calculating dissimilarities.
Default is FALSE (no).

Common Distance Measures | 102

labdsv: :dsvdis ()

The dsvdis () function in labdsv currently offers 7 distance measures. Its usage is:
dsvdis(x, index, weight = rep(l, ncol(x)), step = 0.0, diag = FALSE, upper = FALSE)
The key arguments are:

x — the data matrix to be analyzed, with plots as rows and variables as columns

index — the distance measure to be used. Note that this argument has a different name than
the comparable argument in the other functions (‘index’ vs ‘method’) and does not have a
default distance measure. The available distance measures are:

o steinhaus - aka Jaccard. Based on presence/absence (converts abundances
automatically).

> sorensen - based on presence/absence (converts abundances automatically).

> ochiai — based on presence/absence (converts abundances automatically).

° ruzicka

o bray/curtis — Bray-Curtis. Note the diagonal in the name here.

°c roberts

°o chisqg

weight —an opportunity to weight species differently during the calculation of distances. The
default (rep(1,ncol(x))) assigns all species the same value (1).

step — a threshold dissimilarity to initiate shortest-path adjustment. This is likely to be most
useful in datasets where there is complete species turnover (e.g., spanning very large
gradients). The default (0.0) means that no adjustments are made. If a positive value is
specified, any distances above that value are replaced by the distance of the shortest
connected path between points less than the threshold apart. The result is that the
dissimilarity values are no longer bounded between O and 1. To my knowledge, the
consequences of these types of adjustments for ecological interpretation have not been
rigorously assessed.

diag - whether to return data for the diagonal. Default is FALSE (no).

upper — whether to return data in the upper triangle of the distance matrix (TRUE) or the lower
triangle (FALSE). Default is FALSE (no).

ecodist::distance()

For an introduction to the ecodist package, see Goslee & Urban (2007). In ecodist, the distance()
function can calculate 10 different distance measures. Its usage is:

distance(x, method = "euclidean", sprange = NULL, spweight = NULL, icov, inverted =
FALSE)

The key arguments are:

x —the data matrix or data frame to be analyzed, with plots as rows and variables as columns
index — the distance measure to be used. There are 10 distance measures available:

o euclidean - the default method for this function.

o bray-curtis — note the dash in the name here. Can also be calculated directly using the
bedist () function in this package.

°c manhattan

103 | Common Distance Measures

o mahalanobis

°o jaccard

o difference

°© sorensen

o gower — Gower's distance.

o modgower10 — variation of Gower's distance measure, using base 10.
o modgower?2 — variation of Gower's distance measure, using base 2.

sprange and spweight permit species data to be relativized during the distance calculation.
These only apply to a subset of the available distance measures, particularly Gower’s distance
and variations on it.

icov and inverted are used when calculating Mahalanobis distances.

This package also includes bedist (), a function that returns the Bray-Curtis distance measure. This
is faster than distance(x, index = "bray-curtis"), and includes an option to drop empty rows
or to set distances between empty rows to zero.

betapart

The betapart package provides functions to partition dissimilarity measures into their components.

Incidence-based metrics can be partitioned into the variation associated with turnover and with
nestedness. The beta.pair () function calculates three distance matrices, one for turnover, one for
nestedness, and one for total dissimilarity. It can be used to calculate either Jaccard or Sorensen
dissimilarities.

The components of abundance-based metrics are similar to those of the incidence-based metrics
but a bit nuanced: balanced variation in abundance instead of turnover, and abundance gradients
instead of nestedness. The bray.part() function calculates three distance matrices, one for
balanced variation, one for abundance gradients, and one for total Bray-Curtis dissimilarity.

The components of dissimilarity are additive — the sum of the first two distance matrices calculated
using either method above is equal to the third distance matrix (total dissimilarity). The components
can be analyzed separately but, since they are aspects of the same value, | often relativize them and
consider the proportion of the total dissimilarity that is attributable to one of the two components.

Examples

Today’s Example Dataset

The dataset of plots 1-3 used to introduce the Euclidean distance measure is available as a text file
(Legendre.Legendre.2012.p311.txt) in the course GitHub folder. Save it in the ‘data’ subfolder within
your course folder. Then, open your R project and load the data into R:

test <- read.table("data/Legendre.lLegendre.2012.p311.txt", header = TRUE)

To see the Euclidean distances among plots in test:
(ED.test <- dist(test))

Common Distance Measures | 104

Note that the result is displayed as a lower triangular matrix. What class is this object? It can easily
be converted to a full matrix:
as.matrix(ED.test)

Oak Plant Community Dataset

Now, let's calculate a distance matrix using the geographic data associated with our Oak plant
community dataset. Assuming you have already saved the files to your data folder, we begin by
loading them:

Oak <- read.csv('"data/Oak _data_47x216.csv", header = TRUE, row.names = 1)

Oak species <- read.csv("data/Oak_species 189x5.csv", header = TRUE)

Create an object containing the response data:
Oak_abund <- Oak[, colnames(0Oak) %in% Oak species$SpeciesCode]

As we've already seen, this dataset includes a number of potential explanatory variables along with
the abundances of a large number of species (see the ‘Oak_Metadata.docx’ file for details). We will
begin by focusing on the latitude and longitude of each stand. We will extract these variables
and then use them to calculate a distance matrix. The Euclidean distance measure is a reasonable
choice since these data are spatial coordinates.

library(vegan)

geog.dis <- Oak[,c("LatAppx","LongAppx")] |>

vegdist (method = "euc")

The resulting object contains 1081 distances:
length(geog.dis)

Why this many distances? Recall from the last chapter the formula for the number of pairwise
distances among n sample units.

Note that the number of variables has no effect on the size of the resulting distance matrix. We
will illustrate this by also calculating a distance matrix based on the species abundance data. Before
doing so, let’s think about relativizations again. In this dataset, trees were measured in very different
units than other growth forms so it makes sense to relativize each species by its maximum - this will
put the data for all species on the same scale. (If appropriate for our objectives, we could also have
made other adjustments, such as deleting rare species and relativizing by row totals. For simplicity,
we did not do so here.) We can do this within our piped functions:
spp.dis <- Oak_abund |>

decostand(method = "max") |>

vegdist()

| didn't specify a method for vegdist (). Why not?

Use the str () function to view the details of geog.dis and spp.dis. Verify that they are the same
size, even though geog.dis was based on two variables and spp.dis was based on 189 variables.

Distance matrices like these are what we are going to utilize throughout the rest of the course.

105 | Common Distance Measures

Conclusions

The behavior of a distance measure is highly influenced by the data adjustments (deletions,
transformations, standardizations/relativizations) applied prior to its calculation. It bears repeating
that the appropriateness of these various adjustments must be determined based on the questions
you are addressing.

A single distance matrix always contains values calculated using the same distance measure — we
would never combine in one distance matrix measures obtained using different distance measures.
However, we will see examples of how matrices derived from different data on the same sample
units (as with geog.dis and spp.dis above) can be compared.

There are many distance measures to choose from. While this can be confusing, it also gives
flexibility. Distance measures have different properties and/or make different assumptions about
the data. These properties and assumptions are important to keep in mind when choosing which
distance measure to use. Some analytical techniques implicitly assume a distance measure:

Correspondence Analysis (CA) and Canonical Correspondence Analysis (CCA) are based on chi-
square distances
Principal Component Analysis (PCA) are based on Euclidean distances

In instances like these, any limitations of the assumed distance measure are carried over to the
associated technique. For example, if it is inappropriate to summarize a dataset using Euclidean
distances, it would also be inappropriate to analyze that dataset using PCA. Conversely, if Euclidean
distances are appropriate to apply to a dataset, then PCA may be appropriate ... depending on other
considerations such as the degree of correlation. See the ‘PCA’' chapter for additional information.

The fact that distance measures have different properties can be an asset. For example, a
compositional matrix could be summarized with a presence/absence-based measure and with an
abundance-based measure. Rare species are given more weight in a presence/absence measure
whereas common species are given more weight in an abundance-based measure. Therefore, if
these two distance matrices were analyzed identically, differences between the resulting analyses
would reflect whether patterns in the community are being driven by the rare or the common
species (Lozupone et al. 2007). In a recent study (Bakker et al. 2023) | compared abundance- and
incidence-based measures of grassland compositional variation. We found that grasslands differed
greatly in the importance of these two measures, and that these measures were correlated with
different aspects of the environmental conditions at a site.

References

Anderson, M.J,, T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone, N.J. Sanders, H.V. Cornell,
L.S. Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen, and N.G. Swenson. 2011. Navigating the
multiple meanings of B diversity: a roadmap for the practicing ecologist. Ecology Letters 14:19-28.

Bakker, J.D., J.N. Price, J.A. Henning, E.E. Batzer, T.J. Ohlert, C.E. Wainwright, P.B. Adler, J. Alberti,
C.A. Arnillas, L.A. Biederman, E.T. Borer, L.A. Brudvig, Y.M. Buckley, M.N. Bugalho, M\W. Cadotte,
M.C. Caldeira, J.A. Catford, Q. Chen, M.J. Crawley, P. Daleo, C.R. Dickman, I. Donohue, M.E. DuPre, A.
Ebeling, N. Eisenhauer, P.A. Fay, D.S. Gruner, S. Haider, Y. Hautier, A. Jentsch, K. Kirkman, J.M.H. Knops,
L.S. Lannes, A.S. MacDougall, R.L. McCulley, R.M. Mitchell, J.L. Moore, J.W. Morgan, B. Mortensen, H.
Olde Venterink, P.L. Peri, S.A. Power, S.M. Prober, C. Roscher, M. Sankaran, EW. Seabloom, M.D. Smith,
C. Stevens, L.L. Sullivan, M. Tedder, G.F. Veen, R. Virtanen, and G.M. Wardle. 2023. Compositional
variation in grassland plant communities. Ecosphere 14(6):e4542. https://doi.org/10.1002/ecs2.4542.

Common Distance Measures | 106

Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global
Ecology and Biogeography 19:134-143.

Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from
nestedness, and nestedness. Global Ecology and Biogeography 21:1223-1232.

Baselga, A. 2013. Separating the two components of abundance-based dissimilarity: balanced
changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4:552-557.

Borcard, D., F. Gillet, and P. Legendre. 2018. Numerical ecology with R. 2nd edition. Springer, New
York, NY.

Boyce, R.L.,, and P.C. Ellison. 2001. Choosing the best similarity index when performing fuzzy set
ordination on binary data. Journal of Vegetation Science 12:711-720.

Bray, J.R.,and J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin.
Ecological Monographs 27:325-349.

Chao, A, R.L. Chazdon, R.K. Colwell, and T-J. Shen. 2005. A new statistical approach for assessing
similarity of species composition with incidence and abundance data. Ecology Letters 8:148-159.

Chen, J,, K. Bittinger, E.S. Charlson, C. Hoffmann, J. Lewis, G.D. Wu, R.G. Collman, F.D. Bushman, and
H. Li. 2012. Associating microbiome composition with environmental covariates using generalized
UniFrac distances. Bioinformatics. 28(16):2106-2113. doi:10.1093/bioinformatics/bts342

Clarke, KR., P.J. Somerfield, and M.G. Chapman. 2006. On resemblance measures for ecological
studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded
assemblages. Journal of Experimental Marine Biology and Ecology 330:55-80.

De'ath, G. 1999. Extended dissimilarity: a method of robust estimation of ecological distances from
high beta diversity data. Plant Ecology 144:191-199.

Faith, D.P., P.R. Minchin, and L. Belbin. 1987. Compositional dissimilarity as a robust measure of
ecological distance. Vegetatio 69:57-68.

Goslee, S.C,, and D.L. Urban. 2007. The ecodist package for dissimilarity-based analysis of ecological
data. Journal of Statistical Software 22(7):1-19.

Gower, J.C.1971. A general coefficient of similarity and some of its properties. Biometrics 27:857-874.

Greenacre, M, and R. Primicerio. 2013. Measures of distance between samples: Non-Euclidean. Ch.
5 in Multivariate analysis of ecological data. Fundaciéon BBVA. http://www.multivariatestatistics.org/
publications.html

Jaccard, P.1912. The distribution of the flora in the alpine zone. The New Phytologist 11:37-50.

Legendre, P., and M. De Céaceres. 2013. Beta diversity as the variance of community data: dissimilarity
coefficients and partitioning. Ecology Letters 16:951-963.

Legendre, P, and L. Legendre. 2012. Numerical ecology. 3rd English Edition. Elsevier, Amsterdam,
The Netherlands.

Lozupone, C., and R. Knight. 2005. UniFrac: a new phylogenetic method for comparing microbial
communities. Applied and Environmental Microbiology 71(12):8228-8235. doi10.1128/
AEM.71.12.8228-8235.2005.

Lozupone, C., M. Hamady, S.T. Kelley, and R. Knight. 2007. Quantitative and qualitative B diversity
measures lead to different insights into factors that structure microbial communities. Applied and
Environmental Microbiology 73(5):1576-1585. doi:10.1128/AEM.01996-06

Mahalanobis, P.C. 1936. On the generalised distance in statistics. Proceedings of the National
Institute of Sciences of India 2(1):49-55.

107 | Common Distance Measures

McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. MjM Software Design,
Gleneden Beach, OR.

Plantinga, A.M., J. Chen, R.R. Jenqg, and M.C. Wu. 2019. pldist: ecological dissimilarities for paired
and longitudinal microbiome association analysis. Bioinformatics 35(19):3567-3575. doi: 101093/

bioinformatics/btz120

Sgrensen, T.J. 1948. A method of establishing groups of equal amplitude in plant sociology based on
similarity of species content and its application to analyses of the vegetation on Danish commons.
Kongelige Danske videnskabernes selskab 5(4):1-34. [need to verify citation]

Common Distance Measures | 108

13. Multivariate Outlier Analysis

Learning Objectives

To survey visual and numerical methods of identifying multivariate outliers.

To continue using R.

Key Packages

require(tidyverse, vegan, labdsv)

Introduction

Univariate and bivariate outliers are relatively easy to detect (e.g., Zuur et al. 2010), but multivariate
outliers are much more difficult. For example, if a dataset contains more than 3 variables,
multivariate outliers cannot be detected graphically without first applying some method to reduce
the dimensionality of the data. Creating a distance matrix is one way of doing so. If a single sample
unit is a multivariate outlier, then there will be a large distance between it and all other elements.

The choice of distance measure will affect the ability to detect outliers. As an extreme example, an
outlier in abundance would not be detectable if the data were summarized using a measure based
on presence/absence.

Multivariate outliers can be explored visually and numerically. We'll use a hypothetical but realistic
example to illustrate an outlier. We begin by opening our R Project and loading our Oak data:

Oak <- read.csv("data/Oak data 47x216.csv", header = TRUE, row.names = 1)
Oak species <- read.csv("data/Oak_species 189x5.csv", header = TRUE)

We'll focus on the geographic coordinates of the stands. Let's calculate the Euclidean distance
among the stands:

require(tidyverse); require(vegan)
Oak$Stand <- row.names (0Oak)
original.dis <- Oak |[>

dplyr::select(LatAppx, LongAppx) |>
vegdist (method = "euclidean")

109 | Multivariate Outlier Analysis

What if the decimal place is off by one position in one of the latitude values? To create this example
dataset, we'll change the first latitude value and then calculate a new distance matrix. Note that this
is a temporary (scripted) adjustment — since we aren't saving the changed value within 0ak, our real
data aren't affected.
outlier.dis <- Oak |>

mutate (LatAppx = case_when(Stand == "Stand01" ~ LatAppx / 10,

TRUE ~ LatAppx)) |>

dplyr::select(LatAppx, LongAppx) |>

vegdist (method = "euclidean")

Heat Maps (coldiss ())

Since a distance matrix contains so many values and is difficult to view, several ways have been
developed to summarize it graphically. Borcard et al. (2018) provide a function, coldiss.R, to
generate heat maps of a distance matrix. The function is available in the collection of data, functions,
and scripts that they have published on their website. | have copied it to the course GitHub
repository for ease of access.

To use this function:

Create a ‘functions’ subfolder in your project folder.

Download and save coldiss.R to this subfolder.

Open your R project.

Load this function using the source() function: source("functions/coldiss.R")

Note that this function is now listed in the Environment panel. There are four arguments:

D — distance matrix to use.

nc — number of colors to use in heat map. Default is to use 4 colors (nc = 4).

byrank — whether to use equal-sized classes (byrank = TRUE) or to have equal spacing among
classes (byrank = FALSE). For example, imagine that there are 100 distances that those
distances range from O to 1. Setting byrank = TRUE means that 250 distances will be in each
class; this is the default. Setting byrank = FALSE means that distances from 0-0.25 will be in

one class, 0.25-0.5 in another class, etc.
diag—whether to print object labels on the diagonal (diag = TRUE). Default is to not do this.

We will apply this function to our outlier.dis distance matrix created above. Since we are
concerned here about the actual values of the distances, we will specify equal spacing among
classes:

coldiss(outlier.dis, byrank = FALSE)

Multivariate Outlier Analysis | 110

Dissimilarity Matrix Ordered Dissimilarity Matrix

Stando1
Stando3
Standos
Stando7
Standog
Stand11
Stand13
Stand15
Stand17
Stand19
Standz1
Stand23
Stand25
Stand27
Standzo
Stand31
Stand33
Standas
Standa7
Stand3g
Standa1
Stand43
Stand4s
Stand47

Stando1
Stand41
Stand42
Standdd
Stand46
Stand25
Stand26
Stand27
Standao
Standaz
Stand3g
Standa4
Stand37
Stand23
Stand20
Stand22
Stand19
Stand17
Stand47
Stand16
Stand14
Stand11
Stand10
Standog

Heat map showing Euclidean distances among sample units when StandO1 is an
outlier. The distances are separated into four equally spaced classes, but the first
stand is such an outlier that distances between it and all other stands are in one
class while distances between any other pairs of stands are in the fourth class.
There are no distances in the second or third classes.

Bluer colors indicate pairs of plots that are far from one another, and pinker colors indicate pairs
of plots that are closer to one another. The left-hand image shows the stands as ordered in the
distance matrix, while the right-hand image shows the stands after ordering them so that similar
stands are grouped together.

For comparison, here is the heat map based on the correct distances among stands:
coldiss(original.dis, byrank = FALSE)

Dissimilarity Matrix Ordered Dissimilarity Matrix

Stando1
Stand03
Standos
Stando7
Standog
Stand11
Stand13
Stand15
Stand17
Stand19
Standz21
Stand23
Stand25
Stand27
Stand29
Stand3at
Stand33
Standas
Stand37
Stand39
Stand41
Stand43
Stand45
Stand47

Stando7 =
Stand40 o .
Stand4a
Standos
Stand46
Stand25
Stand2s
Stand27
Stand3o
Standaz
Stand3g
Standa4
Standa7
Stand23
Stand20
Stand22
Stand19
Stand17
Stand47
Stand16
Stand14
Stand11
Stand10
Standog

Heat map showing Euclidean distances among sample units when all data are
correct. The distances are separated into four equally spaced classes, each of
which is present in the heat map.

11 | Multivariate Outlier Analysis

The difference between these two distance matrices can also be viewed by viewing each distance
matrix as a vector of numbers. We'll combine these together so that we can graph them below:
distance.comparison <- data.frame(

outlier.dis = as.numeric(outlier.dis),
original.dis = as.numeric(original.dis)) |>
pivot longer(cols = c(outlier.dis, original.dis))

Be sure you understand the dimensionality of this object.
Now, graph each set of distances:
ggplot(data = distance.comparison, aes(x = value)) +

geom_histogram() +

theme bw()

facet grid(cols = vars(name), scales = "free x") +
original.dis outlier.dis
750 -
€ 500
3
o)
o
250
0 h—.;_; il 1]
0.0 0.5 1.0 1.5 0 10 20 30 40
value

Pairwise distances between stands as calculated with the correct data (original.dis)
and the data with an outlier (outlier.dis).

Dissimilarity Analysis (labdsv: :disana())

The disana() function from labdsv provides a graphical and numerical summary of a distance
matrix. It produces a series of three graphs summarizing the distribution of values within the matrix:

1.

Dissimilarity values, ranked from lowest to highest. Do you understand why there are so many
data points on this graph? (hint: what is the formula for determining how many unique
pairwise combinations there are?)

Minimum, mean, and maximum dissimilarity values for each sample unit.

Mean dissimilarity as a function of minimum dissimilarity. Note that you are asked in the
Console if you want to identify individual plots. If you enter 'Y, the pointer changes to cross-
hairs and you can click on data points in the graph. When done, press ‘Esc’ or choose ‘Finish’ to
break out of the plot ID routine. The names of the points that you chose will be added to the

The results of disana() can also be saved to an object. This object is of class ‘list’. It contains the
minimum, mean, maximum dissimilarity of each plot to all others, as well as a vector identifying
any samples selected in the last graph. You can inspect the structure of this object using the str ()
function, and can also extract individual components for further analysis or use.

Applying this to our example:
outliers <- disana(outlier.dis)

Multivariate Outlier Analysis | 112

To illustrate how the components of this object can be used, let's duplicate the last plot created by
disana() — the minimum dissimilarity compared to the minimum dissimilarity.

merge(outliers$min, outliers$mean, by = "row.names") |>
rename(min = x, mean = y) |>
ggplot(aes(x = min, y = mean)) +
geom point() +
theme bw()

40 A o
30+
-
©
O 204
-
10 A
0- |] T |]
0 10 20 30 40
min

Minimum distance (x-axis) vs. average distance (y-axis) between each stand and all
other stands, where one stand is an outlier.

Note how strongly the outlier stands out from all of the others.

For comparison, apply disana() to the original distance matrix and then duplicate the above
graphic.

Mahalanobis Distance

The Mahalanobis distance is a measure of how likely it is that an individual belongs to a group. In
Section 5.3, Manly & Navarro Alberto (2017) describe how this can be done - their script is available in
the book’s online resources. Several of the functions outlined in the ‘Common Distance Measures’
chapter can calculate Mahalanobis distances, but | haven't investigated this fully. In particular, the
conventional Mahalanobis distance was developed for multivariate normal data but it would also
be possible to modify this technigue so it is applicable to other distributional forms, such as by
calculating the distance between each plot and the centroid (‘center of mass’) of the rest of the
sample units rather than the multivariate mean.

Jackson & Chen (2004) reported that a method based on the calculation of minimum volume
ellipsoids worked better than Mahalanobis distances, though | haven't seen (or looked for) a function
to do this in R. Another option is to write a function in which the mean distance from one sample

N3 | Multivariate Outlier Analysis

unit to all others is calculated and compared to the mean distance among all other sample units.
If a sample unit is an outlier, the mean distance from it to the others will be larger than the mean
distance among other sample units.

Conclusions

Multivariate outliers should be investigated further to see why they are outliers. If a sample differs
strongly from others in a single variable, does it reflect a data entry error that needs to be corrected?
If a sample differ from others with respect to multiple variables, was it perhaps assigned to the
wrong group? You as the investigator ultimately have to decide how to deal with outliers and
whether or not to include them in your analyses.

References

Borcard, D., F. Gillet, and P. Legendre. 2018. Numerical ecology with R. 2nd edition. Springer, New
York, NY.

Jackson, D.A,, and Y. Chen. 2004. Robust principal component analysis and outlier detection with
ecological data. Environmetrics 15:129-139.

Manly, B.F.J.,and J.A. Navarro Alberto. 2017. Multivariate statistical methods: a primer. Fourth edition.
CRC Press, Boca Raton, FL.

Zuur, A.F.,E.N. leno,and C.S. Elphick. 2010. A protocol for data exploration to avoid common statistical
problems. Methods in Ecology and Evolution 1:3-14.

Media Attributions

coldiss_outlier.dis
coldiss_original.dis
distance.comparison
disana

Multivariate Outlier Analysis | 114

PART 1l

GROUP COMPARISONS

This section explores concepts related to multivariate statistical tests of differences between groups.
Concepts are presented in short chapters so that the reader can easily jump to the information they
seek.

We begin by considering ANOVA / MANOVA, which illustrate how variation can be partitioned and
how that partitioning can be expressed in a test statistic.

ANOVA and MANOVA assess the significance of the test statistic via its expected distribution - this
is why they require parametric assumptions such as normality. The techniques we will cover are
permutation-based, which means that they do not make these assumptions. We'll consider:

General principles about permutation tests,
How to control permutations,
How to restrict permutations.

The technigues we'll cover as also distance-based, meaning that they are based on the distance
matrix calculated from the response(s). The techniques that we'll cover are:

ANalysis Of SIMilarity (ANOSIM)

Mantel tests

Multi-Response Permutation Procedure (MRPP)

PERMutational ANOVA/MANOVA (PERMANOVA)
PERMutational analysis of DISPersion (PERMDISP)
Randomization of Residuals in a Permutation Procedure (RRPP)
MVABUND

We'll illustrate each test using two datasets, a simple one that can be worked by hand and a larger
one from our oak plant communities that requires computer calculations. Included is a script to
load and process the larger dataset.

Most of the techniques are designed to test for differences among a priori groups such as
experimental treatments. Some of the techniques are also appropriate for testing linear
relationships with continuously distributed explanatory variables, as in regression. We'll also
consider how to analyze complex models.

Finally, | provide a comparison of the techniques.

N5 | Group Comparisons

14. ANOVA / MANOVA

Learning Objectives

To review the structure of ANOVA and MANOVA.
To review the assumptions of ANOVA and MANOVA when testing for differences among a priori groups.

Introduction

Analysis of variance (ANOVA) is an extremely popular and versatile technique for univariate analyses.
Multivariate analysis of variance (MANOVA) is less commonly used and more restrictive in its
assumptions. However, the structure of these techniques is a helpful starting point for the
techniques we're focusing on.

Assumptions of ANOVA and MANOVA

ANOVA and MANOVA are parametric techniques, meaning that they make assumptions about the
parameters (distributional form) of the population from which samples are taken. For our purposes
here, the key assumptions of ANOVA are that:

1. Errors are normally distributed
2. Variances are equal among groups

With MANOVA, these assumptions are more restrictive:

1. Errors conform to multivariate normality (i.e., are normally distributed in all dimensions)
2. The entire variance-covariance matrix is homogeneous (i.e., variances of all variables and
covariances between all pairs of variables are equal across all groups)

(See the discussion about exchangeable units for another assumption, independence, that is
relevant for both parametric and permutation tests.)

ANOVA is optimal and preferred for data that meet these assumptions but can be far from optimal
when data do not meet them. Of course, it is also limited to univariate responses.

MANOVA is designed for multivariate responses, but is even more sensitive than ANOVA to

deviations from its assumptions. It therefore is often inappropriate for community-level ecological
data.

ANOVA and MANOVA | 116

Key Takeaways

ANOVA is a method of partitioning variation to different sources and expressing those patterns in a test
statistic. Many other techniques have a similar structure.

Structure of ANOVA (and MANOVA)

Although ANOVA is not optimal for all types of data, its basic structure remains insightful in two
ways:

1. As an example of how to partition variation
2. Asan example of how a test statistic can represent that partitioning

Partitioning Variation

Recall that ANOVA focuses on the variation within a dataset. In a simple one-way ANOVA, three
sources of variation are distinguished:

SST: total variation within data (i.e,, total sum of squares), calculated as the sum of the squared
deviations between every observation and the grand mean of the data

SSB: variation between groups

SSW: variation within groups

These sources of variability are related:
SST = SSB + SSW

Verbally, we have determined how much of the total variation (SST) is due to differences between
the groups (SSB) and how much of it is due to variation within groups (SSW). The variation within
the groups is the residual or unexplained variation.

MANOVA partitions the variation similarly to ANOVA, except that it accounts for both the variance
within variables and the covariance between pairs of variables.

This idea of partitioning variability is central to several of the techniques we will be discussing.

Every Test Requires a Test Statistic

The ANOVA test statistic describes how the variation is partitioned. The F-statistic is calculated as
the ratio of variation among groups to variation within groups, weighting each term by its degrees
of freedom (df):

~ S88B/(t—1)
- SSW/(N —t)

17 | ANOVA and MANOVA

where t is the number of groups and N is the total sample size (note that this equation is for a
balanced one-way ANOVA; the details would differ slightly for other designs).

Like ANOVA, every test requires a test statistic. Which test statistic to use is decided by those who
create a test.

As a parametric test, ANOVA assesses the likelihood of this test statistic by comparing the value
obtained from the actual data with the theoretical distribution of its possible values. Our tests
are permutation-based and therefore will compare the test statistic with a set of possible values
obtained by permuting the data.

ANOVA and MANOVA | 118

15. Sample Datasets

Learning Objectives

To introduce two datasets for use throughout this section of the course:

A simple dataset for making calculations by hand
A larger dataset to illustrate how statistical tests can be applied in R

The larger dataset includes a script to automate its loading and initial data adjustments.

Key Packages

require(vegan, labdsv, tidyverse)

Throughout this section, we will work with the following two datasets. Each chapter assumes that
you've loaded the data as described below.

Simple Example

This dataset is small enough that we can do calculations by hand. Seeing the calculations by hand
helps clarify what happens when we apply the same techniques to larger datasets. We can also
verify the calculations by repeating the analysis in R.

The data include two response variables (Respl and Resp2) on 6 plots, and a column identifying the
group to which each plot belongs.

19 | Sample Datasets

Sample Respl Resp2 Group

Unit

Plotl 1 4 A
Plot2 3 2 A
Plot3 5 3 A
Plot4 9 12 B
Plot5 10 8 B
Plote n n B

We can use a dataset like this to ask the question ‘do groups A and B differ in overall response’? Note
that this is a multivariate question; we are not asking about Respl or Resp2 individually. Follow-up
analyses could consider the individual response variables if the multivariate response is significant.

This dataset is available as the file ‘Permutation.example.csv’ from the book's GitHub repository.
Download it to the 'data’ folder of your course folder.

Open your R project and then load these data:
perm.eg <- read.csv("data/Permutation.example.csv", header = TRUE, row.names = 1)

It can also be manually entered:

perm.eg <- data.frame(

row.names = c("Plotl", "Plot2", "Plot3", "Plot4", "Plot5", "Ploté6"),
Respl = c(1, 3, 5, 9, 10, 11),
Resp2 = c(4, 2, 3, 12, 8, 11),
Group = c("A", "A", "aA", "B", "B", "B")

)

Here's the distance matrix for our simple example:
Resp.dist <- perm.eg |>
dplyr::select(Respl, Resp2) |>

dist()

round(Resp.dist, 3)

Plotl Plot2 Plot3 Plot4 Ploth
Plot2 2.828
Plot3 4.123 2.236
Plot4 11.314 11.662 9.849
Plot5 9.849 9.220 7.071 4.123
Plot6 12.207 12.042 10.000 2.236 3.162

| rounded the distance matrix to 3 decimal places for display purposes; in practice | would keep all
decimals as calculated by R.

Sample Datasets | 120

Grazing Example (with a script!)

We'll also look at the oak plant community dataset. Specifically, we'll ask whether community
composition is correlated with differences in current grazing status.

We begin by importing the data. Recall from the metadata that this dataset contains data from 47
stands. We'll create separate objects for the composition and explanatory data. We'll then make two
adjustments to the composition data:

Remove rare species (those present on <5% of sample units)
Relativize by species maxima

Finally, we'll use the Bray-Curtis distance measure to calculate the distance between every pair of
stands.

We've done all of these steps before. We could continue to write these steps out each time, but I've
prepared a script to conduct them. The script (load.oak.data.R) is available in the book’s GitHub
repository.

Once you've saved the script to the ‘scripts’ sub-folder within your analysis folder and opened your R
project file, call the script using source():

source("scripts/load.oak.data.R")

Open the script and review it to ensure that you understand what happens in it:

Three packages (vegan, labdsv, tidyverse) are loaded

Data files are imported

Response and explanatory variables are saved to separate objects

Rare species are removed from compositional data

Compositional data are relativized by species maxima

Bray-Curtis distance matrix is calculated from the relativized compositional data
Resulting matrix is saved as the object 0Oakl.dist

If our research questions warranted other changes (e.g,, relativizing by site totals), we could adjust
the script to include them. The original objects are also available in RStudio if you want to just use
the script to load them and then use them in other ways.

Our grouping factor for this example is current grazing status (Yes, No). We could index this factor
each time we need it (0ak$GrazCurr) but for clarity we'll create an object consisting of just the
grazing status of each plot:
grazing <- Oak$GrazCurr

This is not part of the script because the focal explanatory variables will often vary from study to
study.

121 | Sample Datasets

16. Permutation Tests

Learning Objectives

To explore the theory behind permutation-based tests.

To illustrate how permutation tests can be conducted in R.

Key Packages

require(tidyverse)

Introduction

A statistical test involves the calculation of a test statistic followed by an assessment of how likely
the calculated value of the test statistic would be if the data were randomly distributed. In the case
of ANOVA, the test statistic is the F-statistic, and it is compared to the theoretical distribution of
F-values with the same degrees of freedom.

We will consider a number of tests using a range of test statistics. However, there is no theoretical
distribution for these test statistics. Rather, the distribution of the test statistic will be derived from
the data. Generally, this reference distribution is generated by permuting (i.e., randomly reordering)
the group identities, recalculating the test statistic, saving that value, and repeating this process
many times (Legendre & Legendre 2012).

If the patterns observed in the data are unlikely to have arisen by chance, then the actual value of
the test statistic should differ from the set of values obtained from the permutations.

Key Takeaways

The number of sample units directly affects the number of permutations.

Some permutations are functionally equivalent, so there are fewer combinations for a given sample
size.

Permutation Tests | 122

Number of Permutations (and Combinations)

The number of samples directly affects the number of possible permutations and combinations.

A permutation is a re-ordering of the sample units. From a total of n sample units, the number of
possible permutations (P) is:

P =n!

The number of permutations rises rapidly with sample size — see the table below. To explore this,
enumerate the permutations of the letters {a, b, C, D}. There are four values, so the number of
permutations is:

P=nl=4.3.-2-1=24

Assume that the letters {3, b, C, D} represent sample units, with lower and upper cases representing
different groups. In other words, the first two sample units are in one group and the last two are
in the other group. One permutation of these letters is {a, C, b, D}. In this permutation, we assign
the first and third sample units to one group and the second and fourth sample units to the other
group. Note that this ‘assignment’ is temporary and only for the purpose of this permutation.

When we think about group comparisons, it is helpful to recognize that some permutations are
functionally equivalent. For example, consider the permutations {a, C, b, D} and {C, a, D, b}. In
both permutations, the first and third sample units are assigned to one group and the second
and fourth sample units are assigned to the other group. These permutations represent the same
combination. A combination is a unique set of sample units, irrespective of sample order within
each set. The number of combinations (C) of size ris:

!
n.
Cr =

ri(n —r)!

(this equation is from Burt & Barber 1996). This is for equally-sized groups; the calculations are more
complicated for groups of different sizes.

For our simple example of four sample units, there are
n! 4! _4-3-2-1
riin—7)! 21(4—-2)! 2.1(2-1)

The following table shows how the number of permutations and combinations (into two equally-
sized groups) rises rapidly with the number of sample units.

123 | Permutation Tests

Samples (n) Permutations (P) Samples per group (r) Combinations (C)

4 24 2 6

8 40,320 4 70

12 479,001,600 6 924

16 21x10" 8 12,870

20 2.4 x10® 10 184,756

24 6.2 x10%° 12 2,704,156

28 3.0 x10%° 14 40,116,600
32 2.6 x10%° 16 601,080,390
36 3.7 x 104 18 9,075,135,300
40 8.2 x 1047 20 137,846,528,820
Probabilities

Permutation-based probabilities are calculated as the proportion of permutations in which the
computed value of the test statistic is equal to or more extreme than the actual value. This
calculation can be made with any number of permutations, though it is easier to do so mentally if
the denominator is a multiple of ten, such as 1,000.

The actual sequence of group identities is one of the possible permutations and therefore is included
in the denominator of the probability calculation. This is why it is common to do, for example, 999
permutations — once the actual sequence is included, the denominator of the probability calculation
is 1,000.

The minimum possible P-value is partly a function of the number of permutations. For example,
consider a scenario in which the test statistic is larger when calculated with the real data than when
calculated for any of the permutations. If we had only done 9 permutations, we would calculate

1
P=——=0.1
9+1
However, if we had done 999 permutations, we would calculate
1
P=——=0.001
999 +1

Would it make sense to declare that the effect is significant in the second case but not in the first?

For studies with reasonably large sample sizes, there are many more permutations than we can
reasonably consider. For example, there are 8.2 x 10% permutat|ons of 40 samples as reported in the
above table. If we considered one every millisecond (i.e., 1000 per second), it would still take us 2.6 x
0%’ years to consider them all!

Given the large number of possible permutations, we usually assess only a small fraction of them.
This means that permutation-based probability estimates are subject to sampling error and vary
from run to run. The variation between runs declines as the number of permutations increases;
more permutations will result in more consistent estimates of the probability associated with a

Permutation Tests | 124

test statistic. Legendre & Legendre (2012) offer the following recommendations about how many
permutations to compute:

Use 500 to 1000 permutations during exploratory data analyses

Rerun with an increased number of permutations if the computed probability is close to the
preselected significance level (either above or below)

Use more permutations (~10,000) for final, published results

The system.time() function can be used to measure how long a series of permutations requires.

Key Takeaways

The statistical significance of a permutation-based test is the proportion of permutations in which the
computed value of the test statistic is equal to or more extreme than the actual value.

The actual value of the test statistic is unaffected by the number of permutations.

It's ok to use small numbers of permutations during exploratory analyses, but use a large number
(~10,000) for final analyses.

Exchangeable Units

| mentioned two assumptions of ANOVA / MANOVA in that chapter; a third foundational assumption
of both techniques is that the sample units are independent. Analyses may be suspect when this is
not the case or when the lack of independence is not properly accounted for. Failure to account for
lack of independence is a type of pseudoreplication (Hurlbert 1984).

The assumption of independence also applies for permutation tests — it is what justifies
exchangeability in a permutation test. This means that it is possible to analyze a permutation-based
test incorrectly. Permutations need to be restricted when sample units are not exchangeable. The
correct way of permuting data depends on the structure of the study and the hypotheses being
tested. The basic idea is that the exchangeable units that would form the denominator when
testing a term in a conventional ANOVA are those that should be permuted during a permutation
test of that term.

Questions about independence and exchangeability are particularly pertinent for data obtained
from complex designs that include multiple explanatory variables simultaneously. See Anderson &
ter Braak (2003), Anderson et al. (2008), and Legendre & Legendre (2012) for details on how to identify
the correct exchangeable units for a permutation test.

For example, in a split-plot design one factor can be applied to whole plots and another factor to
split plots (i.e., within the whole plots). Each of these factors would require a different error term.

Analyses of the whole plot factor use the unexplained variation among whole plots as the error
term. This is evident in the fact that the df for the whole plot error term is based on the number
of whole plots, regardless of how many measurements were made within them. Ina
permutation test, variation among whole plots is assessed by restricting permutations such
that all observations from the same whole plot are permuted together. Variation within whole

125 | Permutation Tests

plots is ignored when analyzing whole plot effects.

Analyses of the split-plot factor use the residual as the error term and therefore do not require
restricted permutations. However, they do require the inclusion of a term that uniquely
identifies each whole plot so that the variation among whole plots is accounted for. Doing so
allows the analysis to focus on the variation within whole plots. If a model included interactions
with the split-plot factor, these would also be tested at this scale.

More information on this topic is provided in the chapter about complex models.

Implementationin R

The sample() function can be used to permute data. If needed, you can use the size argument
to create a subset, and the replace argument to specify whether to sample with replacement (by
default, this is FALSE).

The vegan package, drawing on the permute package, includes a number of options for conducting
permutations. This topic is explained in more detail in the chapters about controlling permutations
and restricting permutations.

Simple Example, Graphically

Since our simple example only has two response variables, it is easily visualized:
library(tidyverse)
ggplot(data = perm.eg, aes(x = Respl, y = Resp2)) +

geom point(aes(colour = Group, shape = Group), size = 5) +

labs(title = "Real Data") +
theme bw()
ggsave("graphics/main.png", width = 3, height = 2.5, units = "in", dpi = 300)

(did you notice that we saved the image, and where we saved it?)

Real Data

12.5 A d

10.0 -
Group

o
ool A
2.5+
3 6 9
Resp1

Permutation Tests | 126

To conduct a permutation, we can permute either the grouping factor or the data. Can you see why
these are equivalent? We would not permute both at the same time ... do you see why that is?

We'll permute the grouping factor:
perm.eg$perml <- sample(perm.eg$Group)

We've added the permutation as a new column within the perm.eg object. View the object to
compare the permutation with the original grouping factor. Note that the number of occurrences
of each group remains the same in permutations as in the original.

Let's visualize this permutation of the data. We can use the same code as above with a few changes:

Name of column identifying the groups used for colour and shape within geom point().
Title of figure
Name of file to which image is saved

ggplot(data = perm.eg, aes(x = Respl, y = Resp2)) +
geom point(aes(colour = perml, shape = perml), size = 5) +
labs(title = "Permutation 1") +
theme bw()
ggsave("graphics/perml.png", width = 3, height = 2.5, units = "in", dpi = 300)

Permutation 1

12.5
10.0 1
perm1
& 75- A A
(]
o
5.0 A B
A A
2.5
3 6 9
Resp1

It is possible but somewhat unlikely that the group identities in your graph match this one. Be sure
you understand why!

Simple Example, Distance Matrix

Analyses will be based on the distance matrix so let's consider this. Here it is:

Resp.dist <- perm.eg |>
dplyr::select(Respl, Resp2) |>
dist()

round (Resp.dist, 3)

127 | Permutation Tests

Plotl Plot2 Plot3 Plot4 Plot5
Plot2 2.828
Plot3 4123 2.236
Plot4 1N.314 1.662 9.849
Plot5 9.849 9.220 7.071 4123
Plot6 12.207 12.042 10.000 2.236 3162

Group identity was not part of the distance matrix calculation. This means that permuting the group
identities doesn't change the distance matrix itself.

Permuting group identities does change which distances connect sample units assigned to the
same group. For example, plots 1, 2, and 3 are all in group A in our real data but plots 2, 4, and 6 were
assigned to group A in Permutation 1 above.

Note: To keep our example simple, we did not relativize the data and calculated Euclidean distances.

These decisions do not affect the permutations but, as discussed before, these decisions should be
based on the nature of your data and your research questions.

Grazing Example

Our grouping factor for this example is current grazing status (Yes, No). The sample () function can
also be applied here:
sample(grazing)

We'll use this example in more detail in upcoming chapters.

References

Anderson, M.J,, R.N. Gorley, and K.R. Clarke. 2008. PERMANOVA+ for PRIMER: guide to software and
statistical methods. PRIMER-E Ltd, Plymouth Marine Laboratory, Plymouth, UK. 214 p.

Anderson, M.J,, and C.J.F. ter Braak. 2003. Permutation tests for multi-factorial analysis of variance.
Journal of Statistical Computation and Simulation 73:85-113.

Burt, J.E, and G.M. Barber. 1996. Elementary Statistics for Geographers. 2nd edition. Guilford
Publications.

Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological
Monographs 54:187-211.

Legendre, P.,,and L. Legendre. 2012. Numerical ecology. 3rd English edition. Elsevier, Amsterdam, The
Netherlands.

Media Attributions
main

Permutation Tests | 128

permi

129 | Permutation Tests

17. ANOSIM

Learning Objectives

To understand the theory behind ANOSIM.

To apply ANOSIM manually and through R.

Key Packages

require(vegan)

Theory

ANalysis Of SIMilarity (ANOSIM) was proposed by Clarke & Green (1988). It can be used to determine
whether there are statistically significant differences between two or more groups. ANOSIM is a
non-parametric technigue based on ranks. You may have encountered non-parametric univariate
techniques based on ranks before, such as the Kruskal-Wallis test or the Mann-Whitney U test. We
will encounter ranked data again in a few weeks when we discuss non-metric multidimensional
scaling (NMDS).

The key idea behind ANOSIM is that if the grouping variable is important, then on average the
rank distance within groups will be smaller than the rank distance between sample units from
different groups.

Recent ecological examples are provided by Muthukrishnan et al. (2019), who compared marine
microbial communities, and Sun et al. (2019), who compared soil fungal assemblages beneath
different shrubs.

ANOSIM has lower power (higher probability of Type |l statistical error) if strong gradients are present
in the data (Gotelli & Ellison 2004). See the end of this chapter for recent developments with this
technique.

As available in R, ANOSIM is limited in its utility as it can only be used for one-way and fully crossed
or nested two-way designs.

ANOSIM | 130

Key Takeaways

ANOSIM is a non-parametric test based on the rank distances among sample units. If a grouping
variable is important, the mean rank distance among sample units within a group will be smaller than
the rank distance between sample units from different groups.

The test statistic (R) ranges from -1 (all lowest ranks are between groups —an unusual situation) to +1 (all
lowest ranks are within groups).

A generalized ANOSIM statistic can be applied to complex designs with 2 or 3 factors.

Basic Procedure

The basic procedure for ANOSIM is as follows:

1. Begin with a distance matrix. Convert the distances within the matrix to their ranks, such that
the smallest distance has a rank of 1.

2. Group the ranks to distinguish those that represent observations within the same group and
those that represent observations from different groups.

3. Calculate the average rank within groups (7 y7) and the average rank between groups (7 g). If

the grouping factor is important, the mean rank within groups should be smaller than the
mean rank between groups. Can you see why this is so?
4. Calculate and save the ANOSIM test statistic, R (confusing; not the software!):
rp—Tw
n(n —1)/4
R ranges from -1 if all of the lowest ranks are between groups to +1if all of the lowest ranks are
within groups. It is zero if the high and low ranks are perfectly mixed between and within

groups.
5. Test the significance of R via permutations:

o Shuffle the order of the values in the grouping factor.

o Recalculate R using the permuted grouping